
284 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 1, MARCH 2022

Effective Covering Array Generation Using an
Improved Particle Swarm Optimization

Zhao Li , Yuhang Chen, Yi Song, Kangjie Lu, and Jinwei Shen

Abstract—In the test case generation process of combinatorial
testing, particle swarm optimization (PSO) is widely concerned for
its simple implementation and fast convergence rate; however, it
often falls into local optimum due to premature convergence. To
attack this problem, a novel adaptive value measurement strategy
is adopted by weighing the relationship between current test cases
and historical test cases. The test case with the minimum average
hamming distance is selected as the optimal test case, and the
inertial weight linear differential decrease strategy is developed
to ensure better inertial weight in different search stages, further
to improve the capability of generating smaller covering arrays.
In addition, we integrate the simulated annealing strategy into the
improved PSO to improve the ability of particles jumping out of the
local optimum, and an innovative approach for generating a better
covering array is proposed. Experiments on 16 classical random
strength covering arrays suggest that our approach outperforms
six other techniques in terms of effectiveness.

Index Terms—Combinatorial testing, covering array generation,
improved particle swarm optimization (PSO), scale reduction,
simulated annealing strategy.

I. INTRODUCTION

ANORMAL software testing process needs to test each
module, but the extremely high testing cost has greatly

increased the overhead of software development [1]. In some
scenarios, there are too many influencing factors and parameter
values within the software under test, resulting in a huge number
of test cases and excessive testing costs for full coverage testing.
For instance, in a version of web server, users can configure up to
213 options, and each can be assigned at least two values; if a full
coverage testing is conducted, at least 2213 test cases are required,
which leads to the issue of combinatorial explosion. The com-
binatorial testing focuses on the software faults caused by the
interactions among the inputs [2]−[4], [39]; to solve the above
problem, fewer test cases are selected from the huge combination

Manuscript received September 24, 2021; revised November 3, 2021; ac-
cepted November 29, 2021. Date of publication December 16, 2021; date of
current version March 2, 2022. Associate Editor: Ruizhi Gao. (Corresponding
author: Jinwei Shen.)

Zhao Li, Kangjie Lu, and Jinwei Shen are with the College of Mathematics
and Computer, Guangdong Ocean University, Zhanjiang 524091, China (e-mail:
zhaoli@gdou.edu.cn; lu_kangjie@163.com; jwshengz@163.com).

Yuhang Chen is with the College of Computer and Information Tech-
nology, China Three Gorges University, Yichang 443002, China (e-mail:
1359172090@qq.com).

Yi Song is with the School of Computer Science, Wuhan University, Wuhan
430072, China (e-mail: yisong@whu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TR.2021.3132147.

Digital Object Identifier 10.1109/TR.2021.3132147

space to cover the interactions of the parameters, which can
detect defects with a small number of test cases. As suggested
by Kuhn et al. [5], more than three-quarters of software faults
are caused by the interaction between any two parameters, and
all software faults can be detected by the interactions among six
parameters. Therefore, based on combinatorial testing, only a
small set of test cases can be used to greatly reduce costs while
obtaining higher fault detection effectiveness, which has also
been further confirmed by the research on some open-source
software [6], [7].

The idea of combinatorial testing originated from the design
of experiment (DOE). In 1985, Robert utilized orthogonal Latin
squares to generate covering array and test computer hardware
and software; thus, the combinatorial testing technique was pro-
posed. With the dramatic development, combinational testing
has become an effective software testing technique [40], [41],
which has been successfully applied to many fields, such as
input parameters, configuration, event-driven software, software
product lines, concurrent programs, security, and mobile appli-
cation [8]–[14]. The combinatorial testing technique has also
been involved in the ISO/IEC/IEEE 29119 [15], and nearly
800 research papers related to combinatorial testing have been
published, which can be divided into several categories, includ-
ing modeling, performance optimization, fault diagnosis, etc.,
especially test case generation.

Specifically, to achieve the goal of generating test cases with
greater coverage and smaller scale, three strategies have been
proposed by researchers, i.e., greedy algorithms, algebraic meth-
ods, and evolutional algorithms. Particle swarm optimization
(PSO), a widely used evolutional approach, has been extensively
employed to generate test cases in the field of combinatorial
testing due to its reliability and promise [42]–[44]. However,
the effectiveness of PSO is significantly limited since it typically
falls into local optimum, which reduces the overall performance
of combinatorial testing.

It can be inferred that when using PSO to generate test cases
in combinatorial testing, it is difficult to obtain the optimal
solution due to premature convergence. Aiming at solving
this problem, we propose a novel approach to improve the
inertial weight of PSO, integrate PSO with the simulated
annealing technique, as well as further develop a covering
arrays generation approach that can generate covering arrays
with arbitrary strength. Experimental results demonstrate that
our strategy can substantially enhance the effectiveness of the
original combinatorial testing technique.

The remainder of this article is organized as follows.
Background and related works are given in Section II. We

0018-9529 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on August 10,2022 at 12:39:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4226-5333
https://orcid.org/0000-0001-5453-0187
mailto:zhaoli@gdou.edu.cn
mailto:lu_kangjie@163.com
mailto:jwshengz@163.com
mailto:1359172090@qq.com
mailto:yisong@whu.edu.cn
https://doi.org/10.1109/TR.2021.3132147

LI et al.: EFFECTIVE COVERING ARRAY GENERATION USING AN IMPROVED PSO 285

introduce testing case generation based on inertia weight opti-
mizations, the generation steps of covering array, as well as our
novel PSO-SA strategy in Section III, followed by illustrating
the experiments to compare the effectiveness of PSO-SA with
the baselines in Section IV. Section V concludes this article.

II. BACKGROUND AND RELATED WORK

A. Combinatorial Testing

In 1979, there was already an introduction to the applica-
tion scenarios of combinatorial testing in the book “The art
of software testing,” which include decision table, equivalence
class division, causality diagram, analysis of marginal value, etc.
However, the testers found that the influence of the interactions
between the parameters in the system cannot be detected effec-
tively by using the above techniques, and new approaches need
to be developed to deal with this problem.

The earliest approach in the field of combinatorial testing was
proposed by Mandl in 1985 [16], which first applied the DOE to
software testing, and proposed the issue of test space explosion,
that is to say, testing a large number of parameters and values is
very difficult. Since exhaustive testing cannot be achieved and
random testing lacked theoretical basis [17], Mandl innovatively
proposed the concept of combinatorial coverage between two
parameters and used orthogonal Latin square to generate the
test case set with effectiveness similar to exhaustive testing for
the first time.

In 1985, Tatsumi et al. [18] conducted an in-depth exploration
on combinatorial testing. He systematically explored how to
find various parameters and values from the software system
and generate test cases based on DOE. He specified that the
number of values assigned to each parameter is generally not the
same, and the combination coverage among various parameters
only need to be covered once, which was called a combination
table by Tatsumi et al. [18]. Furthermore, a systematic modeling
technique of combinatorial testing was proposed.

In 1990, researchers at Bell Labs developed a combinatorial
testing cases generation tool called AETG, which can provide
online testing services. This work has pushed the research and
application of combinatorial testing to a dramatic peak.

B. Test Case Generation

Test cases are the main basis of software testing and also a
key factor of software quality assurance. The research focus of
software testing is how to generate a set of test cases with greater
coverage and smaller scale.

Combinatorial testing has made some application achieve-
ments in practice; however, there is still some work to be
improved. Test cases generation is also the core issue of com-
binatorial testing research. To acquire smaller covering arrays,
researchers have been exploring for decades to develop more
significant techniques. The test cases generation of combina-
torial testing is an NP-hard issue, and the type of test case
set can be orthogonal arrays, k-dimensional covering arrays,
incremental covering arrays, or covering arrays with variable
strength. Currently, the widely used testing case generation

techniques mainly include greedy algorithm, algebraic method,
and evolutionary algorithm.

1) Greedy algorithm: It is specified that a local optimal strat-
egy can produce the global optimal solution. Applying the
greedy algorithm to test cases generation of combinatorial
testing was first proposed by Cohe et al. [19]. They pro-
posed a heuristic technique for generating test data based
on pairwise covering, which generates test data according
to the actual test requirements to cover the pairwise or mul-
tiple parameters of the system. In Bell Labs, this heuristic
technique was integrated into a test data generation tool
called AETG. Other well-known greedy algorithms are the
TCG that integrates the parameter values sorting strategy
[20], and the test data generation technique for covering
pair combination based on parameters order [21].

2) Algebraic method: Kobayashi [22] and Williams [23], re-
spectively, proposed two algebraic methods for generating
test cases of pairwise combination, which are generally
better than greedy algorithm and heuristic search algo-
rithm. They construct a pairwise combination covering
array based on some basic orthogonal arrays and feature
blocks, the core idea of which is the overlap of basic
components. However, there are some limitations in using
orthogonal arrays to generate test cases. For instance, the
size of test cases is affected by the number of parame-
ters and candidate values, and the number of test cases
may dramatically increase if the number of parameters
and candidate values increases, making it impossible to
conduct comprehensive testing.

3) Evolutionary algorithm: The use of evolutionary algo-
rithms in test generation is another popular research area
in recent years [24]. The application of genetic algorithms
in covering arrays generation was explored by Ghazi
et al. [25] in 2003, which demonstrated the feasibility of
using genetic algorithms to generate covering arrays. In
2012, Nie et al. [26] proposed to use genetic algorithm
to optimize parameters to generate covering array, which
made a great progress. PSO is an effective heuristic search
algorithm, which is also used for generating test cases in
combinatorial testing [27]. In addition, ant colony algo-
rithm [45], simulated annealing algorithm [46], and tabu
search algorithm [47] are also employed to generate test
cases in combinatorial testing.

C. Covering Array Generation Based on Particle
Swarm Optimization

PSO is a relatively new evolutionary search technique. In-
spired by the foraging behaviors of birds, researchers proposed
to ask leaders in the group to guide the search of each particle.
The good effectiveness and strong memory made PSO a popular
technique in communication, power system, biomedical, and
other fields [28].

Ahmed et al. [29] proposed an efficient strategy for variable-
strength test suite generation based on PSO. In particular, they
successively proposed planar particle swarm test generator (PP-
STG), particle swarm test generator (PSTG), and Variable-
Strength Particle Swarm Test Generator (VS-PSTG) techniques,

Authorized licensed use limited to: Wuhan University. Downloaded on August 10,2022 at 12:39:02 UTC from IEEE Xplore. Restrictions apply.

286 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 1, MARCH 2022

to respectively generate three types of covering arrays: two-
dimensional, multidimensional, and variable strength, with the
goal of ensuring optimal test size reduction. Chen et al. [30]
developed a test case reduction strategy, which integrated PSO
into pairwise testing (a special case of combinatorial testing
aiming to cover all the pairwise combinations), to further reduce
the size of the covering array and analyze the impact of various
settings on the size of test cases. These explorations above have
acquired good achievements based on which the influence of
various parameters on the algorithm performance and the size of
covering arrays are taken into account. Shi et al. [31] discussed
the influence of inertial weight and maximum velocity on the
effectiveness of PSO, and then some researchers made linear
or nonlinear adjustments to related parameters, such as inertial
weight or learning factor. In addition, Premalatha and Natarajan
[49] presented a hybrid model of PSO and genetic algorithm to
prevent the suboptimal solutions, and the experimental results
showed that the proposed approach indeed outperformed the
standard PSO. Furthermore, in order to search better solution and
hunt the global optimum, Liu and Qiu [50] attempted to combine
PSO with the Levenberg−Marquardt algorithm or the conjugate
gradient algorithm, which is proven to be more effective than the
adaptive PSO algorithm.

The techniques above have improved the effectiveness of
these algorithms. However, it is always difficult to find the opti-
mal parameter configuration, and unsuitable parameters may be
selected at a certain step of the algorithm, resulting in a decrease
in the effectiveness. To attack the above problem, researchers
have successively proposed strategies for adaptive or periodic
adjustment of parameters. For the issue that PSO is trapped in a
local optimal when facing complex problems, a variety of other
techniques are integrated into PSO, such as crossover operator,
mutation operator, and particle regeneration, which effectively
enhance the effectiveness of PSO [32].

III. OUR TECHNIQUE

PSO is well-suited to the covering array generation of com-
binatorial testing, and an inertia weight differential decrement
strategy is employed to build the combinatorial testing covering
arrays due to PSO’s series of advantages, including only a
few parameters needed, simple principles, and fast convergence
speed.

A. Testing Case Generation Based on Inertia
Weight Optimizations

An advanced PSO, which is based on the inertia weight linear
differential decrement strategy, differs from the classic PSO in
the following aspects.

1) Compared with the traditional fixed inertia weight strat-
egy, the particles have a stronger global search capability
in the initial state, and a much stronger local search capa-
bility in the later stage also prevents particles from falling
into local optimal solution.

2) Compared with the classic inertia weight linear decrement
strategy, the inertia weight is the n-degree polynomial
function of time in advanced PSO; thus, it changes slowly

Algorithm 1: Calculation of Linear Differential Decrement
Strategy of Inertia Weight ω.

1) dω
dt = ng(ωmax−ωmin)

tnmax
gt

2)
ωmax∫
ω(t)

dω = ng(ωmax− ωmin)
tnmax

t

∫
0
ϑdϑ

3) ω = ωmax−(ωmax − ωmin)× tn

tnmax
.

in the initial stage but rapidly in the later stage, which is
advantageous for finding a global optimal solution quickly.

Because the particles in PSO are randomly dispersed in solu-
tion space in the initial state, using a large inertia weight in the
initial stage is important to boost the global search capability.
However, as iterations increase in the later stage, the particles
become closer to the optimal solution; so the local search ability
needs to be strengthened gradually. Eberhart et al. [33] proposed
an inertia weight linear decrement strategy based on this hypoth-
esis, illustrated in the following formula:

ω = ωmax −
(
ωmax − ωmin × t

tmax

)
(1)

where t represents the current number of iterations, tmax is
the maximum number of iterations, and ωmax and ωmin rep-
resent the maximum and minimum values of the inertia weight,
respectively.

Because the formula has a constant scope, the change of speed
is always kept at the same level. This leads to an unexpected
phenomenon in the PSO iteration process; that is, in the initial
iteration, if the particle is in a poor position, PSO is likely to fall
into local optimal solution with the iteration and the declining
speed.

To avoid this phenomenon and prevent particles from falling
into local optimal solution, this article puts forward an inertia
weight linear differential reduction strategy based on the tradi-
tional inertia weight linear decrement strategy, which is shown
in the following formula:

ω = ωmax −
(
ωmax − ωmin × tn

tnmax

)
(2)

where the definitions of t, tmax, ωmax, and ωmin are the same as
those in formula (1), and n is the exponent.

Formula (2) is obtained through Algorithm 1.
The inertia weight is an n-degree polynomial function of the

iteration times t in the above formula, which is also negatively
correlated to the iteration times. Fig. 1 shows a comparison of
the function changes (the value of n in Figs. 1 and 2). It is
obvious that the initial iteration stage of advanced PSO has a
slow interval of changes, which is conducive to the global search
of particles. However, the later iteration stage has accelerated
speed of reduction, which can achieve a quick convergence
and approach to the optimal value. The function graphs of the
advanced and classical PSO approaches are shown in Fig. 1.

The fitness function guides the iterative updating process of
PSO and thus determines whether the PSO algorithm can find
the optimal solution. Hence, it is important to set a reasonable
fitness function. This article uses the combination number that

Authorized licensed use limited to: Wuhan University. Downloaded on August 10,2022 at 12:39:02 UTC from IEEE Xplore. Restrictions apply.

LI et al.: EFFECTIVE COVERING ARRAY GENERATION USING AN IMPROVED PSO 287

Fig. 1. Comparison of the two convergence strategies.

Fig. 2. Process of generating a single testing case.

can be covered by the current test case as the fitness function of
PSO.

For example, software to be tested consists of four parameters,
each of which has two valid values, namely, 0 and 1. The fitness
function of the software when it is covered by two-way combi-
natorial testing is introduced as follows: suppose a testing case
T1 = (1,1,0,0) has been generated, the two-way combination
that can be covered is: (1, 1, _, _), (1, _, _, 0), (1, _, _, 0), (_, 1,
, 0), (, _, 0, 0), (_, 1, 0, _), 6 in total, of which “_” indicates
that the uncertainty of the value of the corresponding parameter.
Six testing combinations can be covered by T1; thus, the fitness
value of T1 will be 6 correspondingly.

B. Generation of Covering Array Based on Improved PSO

At the beginning of solving a problem, PSO first makes the
rule that the particles are uniformly distributed in the whole
solution space and makes the particles move at a certain speed
in the solution space. Subsequently, each iteration causes each
particle to constantly update the current state according to its
own past optimal position, also known as personal best value
(pBest), and the optimal position of the entire population, also
known as global best value (gBest). By constantly searching in
this way, each particle will gradually get closer to the personal
optimal direction and the global optimal direction, so as to find
the approximate optimal solution or the optimal solution of the
problem.

Suppose that in a D-dimensional search space, the ith particle
represents an efficient solution to the problem, and the velocity
and position of the particle pi, j can be respectively represented
by the vector set Vi and Xi, where Vi = (vi, 1, vi, 2, …, vi, d)
and Xi = (xi, 1, xi, 2, …, xi, d). In each iteration, PSO uses the
following two formulas to calculate the corresponding velocity
and position of the particles:

vi,j (k + 1) = ω · vi,j (k) +C1r1 [pBesti,j (k)− xi,j (k)]

+ C2r2 [gBestj (k) − xi,j (k)] (3)

xi,j (k + 1) = xi,j (k) + vi,j (k + 1) . (4)

In the above formula, pBesti, j is the optimal position (per-
sonal optimal position) recorded in the history of particle pi, j

under the J-dimensional solution space, and gBestj is the histor-
ical optimal position (global optimal position) of particles in the
whole search space under the J-dimensional solution space. The
velocity update process in formula (3) consists of three parts:
the first part is inertia, which represents the tendency of the
particle to keep its own motion. ω is called the inertial weight.
The second part is self-cognition, which represents the learning
and evolution ability of the particle based on its own historical
optimal position. C1 is the learning factor of the self-cognition
of the particle, and r1 is the random number of the interval [0,1].
The third part is collaboration, which represents the information
exchange among all the particles in the population. C2 is the
learning factor of the collaboration part, and r2 is the random
number of the interval [0,1]. Each particle in PSO can constantly
move in the solution space under the control of these three parts;
in others words, these parameters guide the whole population to
transition between local search and global search.

Based on the above discussion, we can gain the steps of gen-
erating a single combinatorial testing case based on the inertia
weight improvement strategy. The experimental parameters used
in this article, including population size, iteration times, and
learning factors, are set to commonly used values recommended
by Wu [34]. Algorithm 2 provides the pseudo-code description
of the test case generation process.

The process of generating a single testing case is shown in
Fig. 2.

For example, given a coverage array, CA(2, 5, 3), in which
the covering intensity is set to 2, the number of parameters is 5,
and the number of options of each parameter is 3 (i.e., 0, 1, 2),
we employ the mentioned Algorithm 2 to process it and a total
of 12 test cases can be delivered: (0, 0, 1, 0, 1), (1, 2, 2, 1, 1),

Authorized licensed use limited to: Wuhan University. Downloaded on August 10,2022 at 12:39:02 UTC from IEEE Xplore. Restrictions apply.

288 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 1, MARCH 2022

Algorithm 2: Generation of a Test Case Using PSO, of
Which the Inertial Weight is Optimized.

Input: params n, Corresponding values υ,
Combination to be covered S.

Output: Optimal test cases gBest.
1. it = 0, size = 80, iteration = 250,
2. C1 = C2 = 1.3, gBest = NULL
3. for each particle pi do
4. Random initialization for position χi and velocity υi

5. end for
6. while it < The preset maximum number of iterations

do
7. for each particle pi do //Adaptive value evaluation

stage
8. Calculated adaptive value fitness(pi)
9. If(fitness(pi) = C(n, t))

10. return pi
11. The particle with the maximum fitness value in the

population was updated to gBest, and the historical
optimal position of particle i was updated to pBesti

12. end for
13. for each particle pi do // Update location and speed
14. Introduce the inertial weight adjustment strategy
15. Use (3) and (4) to update particle velocity and

position
16. Deal with maximum speed and boundary issues
17. end for
18. it = it + 1
19. end while
20. return gBest

(1, 1, 1, 2, 0), (0, 1, 0, 1, 2), (2, 0, 2, 2, 2), (2, 2, 0, 0, 0), (1, 0, 0,
1, 0), (2, 1, 1, 1, 1), (1, 2, 1, 0, 2), (0, 2, 2, 2, 0), (1, 1, 0, 2, 1),
and (2, 1, 2, 0, 1). Similarly, if the covering intensity is set to 3,
a total of 38 to 41 test cases1 can be obtained by feeding CA(3,
5, 3) to Algorithm 2.

C. Simulated Annealing Strategy

The inertia weight adjustment strategy of PSO can effectively
reduce the scale of the covering array while ensuring the running
time of the algorithm. To further improve the performance of
PSO combinatorial testing covering array generation, this article
introduces a simulated annealing strategy to enhance the existing
strategy. We will give the details concerning how to integrate
a simulated annealing strategy into the existing PSO covering
array generation in detail.

Simulated annealing (SA) is an algorithm inspired by thermo-
dynamic behaviors [35] and simulates the physical process of
metal cooling, the physical principle of which is that, for a metal
that is at a high temperature and needs to currently cool down,
the cooling process is also the process of reducing the internal
energy in the object. In general, the greatest strategy is to quickly
reduce the object’s temperature. However, the rapid cooling
rate makes establishing a stable crystalline state difficult for the

1.These test cases are not listed here due to the limited space.

Explanation of parameters.
T0: Initial temperature.
T: The temperature in each iteration is generally T = 0.9

× T0.
x: Current solution.
x1: Objective solution.
Δ f: f (x) − f (x1).

object, and the object cannot minimize its internal energy. One
potential idea is to enable slow cooling to make sure each particle
in the metal has sufficient time to choose the best position,
arrange closely and orderly and thus progressively build up
a stable crystal state. Considering such a physics process and
the mathematical algorithm comprehensively and applying the
former to the issue of finding the optimal solution, the simulated
annealing algorithm came into being. The simulated annealing
algorithm starts from a higher initial temperature and, with
the continuous decline of temperature parameters, randomly
searches the global optimal solution of the objective function in
the solution space based on the probability jump characteristics,
that is, jumping out of the local optimal solution with a certain
probability and finally approaching the global optimal solution.

Since simulated annealing can avoid local optimal solution
problems by accepting a bad solution, it has achieved extensive
success in solving complex optimization problems. A simulated
annealing algorithm extends the local search algorithm and can
converge to the global optimal solution under certain conditions.
As a result, SA is regarded as a global optimal algorithm in
theory.

The simulated annealing process starts with the initial feasible
solution, sets an initial temperature T0, and interferes with the
algorithm’s solution generation by controlling the change of
the temperature T. Through the structure iteration, simulated
annealing interferes with a candidate solution until the temper-
ature T reaches a preset value lower than the stopping standard.
In this process, a new candidate solution is selected from the
neighborhood of the current solution through each iteration.
Based on the comparison of these solutions, the best solution
will be selected as the current new solution. In some scenarios,
the algorithm can accept a bad solution with a certain probability
to avoid local optimal value and continue to find a better solution.

The simulated annealing algorithm needs to set the following
parameters.

For example, Fig. 3 shows a simple optimization process of
simulated annealing. The red point is a local best point. When
running to the red point, the algorithm will advance with a certain
probability and accept the inferior solution until it finds the green
point. At this time, the simulated annealing process ends and the
temperature is also reduced to 0.

The simulated annealing algorithm determines whether to
replace the optimal solution with the new solution generated by
the selection according to the Metropolis criterion, as illustrated
in the following formula:

Pi(n)

{
1, Ei(n) ≥ Eg

e
Ei(n)−Eg

Ti , Ei(n) < Eg

(5)

Authorized licensed use limited to: Wuhan University. Downloaded on August 10,2022 at 12:39:02 UTC from IEEE Xplore. Restrictions apply.

LI et al.: EFFECTIVE COVERING ARRAY GENERATION USING AN IMPROVED PSO 289

Fig. 3. Optimization of simulated annealing.

where Ei (n) represents the internal energy of the ith particle at
the nth iteration, that is, the fitness value of the current particle
i. Eg represents the most advantageous internal energy in the
current population. Ti indicates the current temperature value,
and each iteration process can result in the controllable linear
decline of Ti to a certain extent. The optimization process of the
simulated annealing method aims to achieve constantly slow
cooling and search for new solutions. If the energy Ei(n) in the
current particle exceeds the most advantageous internal energy
Eg of the current population, the probability of this particle
entering the current position will be directly set to 1, that is,
it will definitely enter. On the contrary, if the energy Ei(n) in
the current particle is less than the most advantageous internal
energy Eg of the current population, the particle will enter the
current position with a certain probability.

D. PSO-SA: A Novel Technique for Effectively Generating
Covering Array

In the traditional PSO algorithms, the flying speeds v of
particles are controlled in a certain range; thus, the particles are
prevented from moving in a large deviation to avoid affecting
the convergence speed and optimization results of the whole
population. In the early stage of the algorithm execution, the
convergence speed is high, and it might reach the extreme value
quickly. However, after a period of execution, the speeds of
all particles are near to 0, the capability of position updating
becomes weak, and the convergence speed decreases or even
stops. Hence, particles in PSO are prone to fall into local optimal.
If a particle moves to a better position than the current position,
which is also an optimal position for the global, the particle will
send signals to the population. Consequently, the subsequent
iteration process will be carried out based on this confusing loca-
tion, and the optimization process may fall into the local optimal
solution. This phenomenon is called “premature convergence.”

PSO simulates the birds’ behavior of hunting for food to-
gether. Although PSO does have a great advantage over other
algorithms, there are still several limitations in its later stage,
for instance, being prone to fall into local optimal solution,
being prone to diverge, suffering from premature convergence,
etc. These long-standing challenges remain the attention of
researchers, and they find that the accuracy of PSO can be
improved by modifying its parameters. However, for different

optimization problems, various settings will lead to different re-
sults, and no optimal combination of parameters can be suitable
for all cases. In other words, the best parameter selection in one
optimization issue may not be the greatest choice in another
issue.

To enable PSO to jump out of the local optimal position as
much as possible, this article introduces a simulated annealing
strategy so that particles can jump out of the local optimal
solution by receiving the poor solution with a certain probability.

The simulated annealing algorithm is likely to obtain high-
quality solutions at the cost of a slow convergence rate. In
particular, when facing large-scale optimization challenges, the
simulated annealing algorithm has extremely low efficiency.
Therefore, it will take a lot of time to obtain the high-quality
approximate optimal solution when using simulated annealing
to solve the problem, which reduces its advantage significantly;
thus, the simulated annealing algorithm fails to gain a wide
practical application. To address this problem, the annealing rate
can be adjusted appropriately to lower the running time of the
algorithm.

There are two essential mechanisms for the simulated an-
nealing algorithm: first, accepting the bad solution with a certain
probability, and, second, simulating a cooling annealing process
of high-temperature metals. These mechanisms allow SA to
accept not only the solution that improves the fitness value of the
objective function but also the solution that probably worsens
the fitness value at a certain probability.

Many researchers and algorithm enthusiasts have made a se-
ries of improvements to PSO since its birth [48]. These attempts
mainly seek to improve PSO speeds and the updating diversity of
locations, maintain the evolutionary capability of the algorithm
during the optimization process, thus avoid falling into the local
optimum, and search the global optimal solution.

It is imperative to make the particles jump out of convergence
and fly to other areas to search again when premature conver-
gence occurs so that PSO can continue finding the global optimal
solution. The aforementioned simulated annealing algorithm
offers a solution to the challenge outlined above. SA algorithm
takes effect before the particles accept the new solution, which
enables the optimization process to not only accept a better solu-
tion but also accept a bad solution with a certain probability. Such
capability can effectively alleviate the premature appearance of
PSO.

To improve the performance of the whole optimization pro-
cess, we propose a novel PSO algorithm based on simulated
annealing strategy (PSO-SA), which integrates two algorithms
through applying the simulated annealing algorithm’s ability
to accept bad solutions with a certain probability to PSO. The
overview of the PSO-SA is shown in Fig. 4.

When the traditional PSO algorithm generates the covering
array of combinatorial testing, the fitness function is defined as
the number of combinations that can be covered in the uncovered
area. This metric only considers the optimal test case in the
current iteration process but ignores the relationship between
the current generated test case and the existing test suite.

Table I provides two constructions of the covering array CA
(N; 2, 34). By calculating the fitness value, it can be found that the
first three items of the two constructions can cover C (4, 2) = 6

Authorized licensed use limited to: Wuhan University. Downloaded on August 10,2022 at 12:39:02 UTC from IEEE Xplore. Restrictions apply.

290 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 1, MARCH 2022

Fig. 4. Overview of PSO-SA strategy.

TABLE I
TWO CONSTRUCTIONS OF COVER TABLE CA (N; 2, 34) CONSTRUCTION 1

different two-way combinations. But when generating the fourth
testing case, the value between any two parameters in Method
2 has been covered. We randomly select a test case (1, 0, 1, 2).
Because (1, _, 1, _) has been covered before, we fail to find
a test case that can cover six different two-way combinations
in the fourth case. In Construction 1, we can find (1, 0, 1,
2) to cover six combinations. The generation of combinatorial
testing covering array aims to find the smallest covering array.
Taking CA (N; 2, 34) as an example, its minimum covering array
size is 9; so each testing case is required to cover six testing
combinations. Construction 2 cannot get the minimum covering
arrays, which is not expected to be seen in the combinatorial
testing. Therefore, when taking into account the PSO final result
gBest, we should also consider other factors in addition to the
number of combinations that test cases can cover.

Given this problem, this article introduces a novel fitness value
measurement strategy proposed by Wu et al. [34], to enable the
test case to be more compact. The average Hamming distance is
employed to measure the “tightness” between a test case t and an
existing set TS. This article defines the Hamming distance d1,2
between testing case t1 and t2 as the number of parameters with
different values between the two testing cases, among which the
number of test cases in the test suite TS is represented as |TS|.
The average Hamming distance between t and TS is defined as

follows:

H(t, TS) =
1

|TS|
∑
k∈TS

dtk. (6)

By improving the global optimal position, PSO selects the
global optimal solution from the candidate solutions with the
maximum coverage of the uncovered combinations (with the
maximum fitness value), and its distance metric is the mean
Hamming distance.

This section introduces a simulated annealing strategy to
improve the PSO algorithm and proposes a covering array
generation method based on this algorithm. The general logic
framework of this approach consists of two components: the
testing environment construction and the actual testing, as shown
in Fig. 5.

The testing environment construction component leads the
whole process of generating the combinatorial testing covering
arrays. This component models the system under test (SUT)
and converts the influencing factors of the actual testing system
into mathematical parameters. Then, the static logic analysis
is carried out on the SUT to clarify the covering intensity and
the system constraints. Finally, a set S of combinations to be
covered can be obtained. For example, through the construction
of the testing environment, the covering is conducted on the
combination CA (2, 10, 10), where the covering intensity value
is 2, the number of parameters is 10, and each parameter’s option
is also 10.

The actual testing component is the crux of the combinato-
rial testing method. Based on the previous testing environment
construction, the final covering array is generated by combining
the PSO-SA algorithm with the testing case evolution strategy
(one test at a time). Specifically, the particle position and velocity
are first initialized, and a test case is generated by the PSO-SA.
Then, the “one test at a time strategy” is adopted to remove
the combinations that can be covered by the test case from
S. Finally, the preceding steps are repeated until all combina-
tions in S are covered or the maximum number of iterations is
reached.

Generating a test case based on the PSO-SA includes the
following steps:

Step 1: Initialize the position of all particles.
Step 2: Set the initial temperature t0 = fmax − fmin, where fmax

and fmin are the maximum and minimum fitness of the initial
population respectively.

Step 3: Set pBest as the current position and gBest as the optimal
particle position in the particle swarm to evaluate the particle
fitness value.

Step 4: Update the particle position and speed according to the
particle swarm formula.

Step 5: Generate a new position randomly for the particle and
calculate the difference VC of the adaptability between the
old and the new positions.

Step 6: If VC < 0, the particle enters the new position; if VC =
0, conduct the global optimal position judgment. Otherwise,
execute the next step.

Authorized licensed use limited to: Wuhan University. Downloaded on August 10,2022 at 12:39:02 UTC from IEEE Xplore. Restrictions apply.

LI et al.: EFFECTIVE COVERING ARRAY GENERATION USING AN IMPROVED PSO 291

Fig. 5. Covering array generation framework.

Step 7: Generate the random number r between (0,1), if r < min
[1, exp (−VC/t)], the particle enters the new position, and
then perform Step 4 again.

Step 8: Annealing operation: t = 0.9 × t.
Step 9: Determine whether the optimization process reaches the

maximum iteration times; if it does, go to Step 10; otherwise,
go back to Step 3.

Step 10: Output the complete testing case.

IV. CASE STUDIES

A. Effectiveness Evaluation of W-PSO

To verify the effectiveness of the PSO based on the inertia
weight linear differential decrement strategy (W-PSO) to gener-
ate combinatorial testing cases, we randomly select 10 represen-
tative covering arrays in previous researches for analysis. The
covering arrays are shown in Table I and include the covering
array of any strength. Considering the randomness of PSO, we
repeat each algorithm 20 times in each covering array and then
report the average and minimum of the scale of the generated
covering arrays.

We choose four PSO algorithms, PSO, PSO-1, adaptive par-
ticle swarm optimization (APSO), discrete particle swam op-
timisation (DPSO), as baselines to compare them with the W-
PSO algorithm. The PSO algorithm adopts fixed inertia weight;
PSO-1 adopts inertia weight linear decrement strategy; APSO
algorithm [36] uses self-adaptive adjustment strategy proposed
by Zhan for learning factors; DPSO algorithm [33] is a discrete
PSO algorithm proposed by Wu.

The W-PSO (the square of iteration times) algorithm is com-
pared with PSO (with the fixed inertia weight as 0.7), PSO-1
(inertia weight linear decrement strategy), APSO algorithm, and
DPSO algorithm. This article analyzes the minimum and average
scale of covering arrays generated by these five algorithms and
verifies whether the W-PSO algorithm has better optimization
effectiveness on the covering array generation for combinatorial

TABLE II
TEN SELECTED COVERING ARRAYS CA1(2, 6, 3)

testing. Table II shows the minimum and average scale of the
first four algorithms to generate the covering array, as well as the
minimum size of the DPSO algorithm to generate the covering
array. The number in brackets represents the time (seconds) that
the algorithm spends.

Table II shows the minimum and average scale of covering
arrays generated by the five algorithms. Black font indicates the
significant difference between the five algorithms in generating
the smallest covering array. Based on the performance of these
five algorithms, we can find that the W-PSO algorithm gener-
ates a smaller covering array compared with PSO, PSO-1, and
APSO algorithm in 50% situations (that is, CA4, CA5, CA7,
CA8, and CA10) and has no worse than the existing results
in 90% situations. Although the DPSO algorithm generates a
smaller covering array scale than the W-PSO algorithm under
large covering requirements, it takes almost 10 times as much
time as the W-PSO algorithm, thus increasing the testing cost
significantly. The W-PSO algorithm generates similar covering
arrays to those generated by the DPSO algorithm in a very
short time. Besides, W-PSO is more likely to generate smaller
covering arrays when the covering requirement is greater than
4; as a result, it can be concluded that under the high covering
requirements, the performance of W-PSO performs better than
the traditional PSO and the PSO based on the inertia weight
linear decrement strategy.

In addition, in the aspect of the average scale of generating
covering arrays, W-PSO algorithm performs slightly better than
PSO algorithm and PSO-1 algorithm in 80% (8/10) situations

Authorized licensed use limited to: Wuhan University. Downloaded on August 10,2022 at 12:39:02 UTC from IEEE Xplore. Restrictions apply.

292 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 1, MARCH 2022

TABLE III
COMPARISON OF COVERING ARRAYS

and better than APSO algorithm in 100% (10/10) situations;
W-PSO algorithm is significantly better than APSO algorithm
in 60% (6/10) situations of covering array generation.

B. Effectiveness Evaluation of PSO-SA

This article develops a series of optimizations and improve-
ment strategies for the PSO algorithm of the generation of
combinatorial testing covering arrays, including optimizing the
inertia weight value strategy, introducing a simulated annealing
strategy, and optimizing the same fitness value through the
Hamming distance. To evaluate the effectiveness of the proposed
strategy, we design the following experiments to compare our
proposed strategy with many other counterparts.

Experiments in Section IV-B have demonstrated the op-
timized inertia weight linear differential reduction strategy’s
advantages compared with baselines. This section mainly re-
searches the effectiveness of other approaches on the generation
of combinatorial testing covering arrays. We will focus on two
research questions (RQs):

RQ1: Does the proposed PSO-SA algorithm generate a
smaller covering array?

RQ2: Whether the optimized global optimal position evalu-
ation strategy optimizes the algorithm?

To explore these two RQs, in addition to the APSO algorithm
in Section IV, PSO-CL [37] and PSO-DMS [38] algorithms are
also implemented to generate covering arrays and compared
with the proposed PSO-SA algorithm. The experiments are
conducted on Windows 10 operating system, with the i7-6700k
processor and 16-GB memory.

The main objective of generating combinatorial test cases
is to build a test suite with strong covering capability, i.e.,
covering arrays. Thus, the primary challenge is how to generate
smaller covering arrays without loss of covering capability. To
compare the performance of the selected algorithms with our
proposed PSO-SA, this article carries out extensive experiments
in terms of the scale of generated covering arrays. This section
complements six additional classical covering matrices with
variable strength [34], as shown in Table IV. The scale of
classical covering matrices with variable strength is the addition
of covering arrays’ scale generated under different covering
intensities. To avoid the influence of random factors on the

TABLE IV
SIX COVERING MATRICES WITH VARIABLE STRENGTH

VCA11 (2, 315, CA (3, 35))

experimental results during execution, each covering matrix is
executed 20 times independently, and the minimum and average
sizes of the generated covering arrays are collected.

The experimental design of this section adds two groups
of comparative experiments, namely, PSO-CL and PSO-DMS.
Table V shows the experimental results of the minimum scale
and time consumption of the covering array generated.

Table V shows the minimum scale of PSO algorithm, W-PSO
algorithm, APSO algorithm, DPSO algorithm, PSO-CL algo-
rithm, PSO-DMS algorithm, and PSO-SA algorithm in the 20
generations of combinatorial testing covering arrays, where the
numbers in parentheses indicate the running time (in seconds).
Overall, it can be seen that the PSO-SA algorithm performs
better than other algorithms.

The covering arrays generated by PSO-SA are the minimum
of seven algorithms in 56% (9/16) situations, and it is no worse
than the other six algorithms in 87.5% (14/16) situations. For
example, in terms of the comparison between PSO-SA and PSO,
the PSO-SA algorithm is better than the PSO algorithm in 81%
(13/16) situations and is not inferior to the PSO algorithm in 94%
(15/16) situations. As for the comparison between PSO-SA and
APSO, the PSO-SA algorithm is better than the APSO algorithm
in 87.5% (14/16) situations and is 100% no better than the
APSO algorithm. As for the comparison between PSO-SA and
DPSO, the PSO-SA algorithm is superior to the DPSO algorithm
in 62.5% (10/16) situations and is not inferior to the APSO
algorithm in 81% (13/16) situations. In terms of the comparison
between PSO-SA and PSO-CL, the PSO-SA algorithm is better
than the PSO-CL algorithm in 81% (13/16) situations and is no
better than the PSO-CL algorithm in 93.75% (15/16) situations.
As for the comparison between PSO-SA and PSO-DMS, the
PSO-SA algorithm is better than the PSO-DMS algorithm in
81% (13/16) situations and is no better than the APSO algorithm
in 93.75% (15/16) situations.

Authorized licensed use limited to: Wuhan University. Downloaded on August 10,2022 at 12:39:02 UTC from IEEE Xplore. Restrictions apply.

LI et al.: EFFECTIVE COVERING ARRAY GENERATION USING AN IMPROVED PSO 293

TABLE V
MINIMUM SCALE COVERING ARRAY THAT CAN BE GENERATED BY EACH ALGORITHM

Fig. 6. Comparison among each algorithm.

From the viewpoint of time-consumption, the PSO algorithm
and W-PSO algorithm cost the least time, and the PSO-SA algo-
rithm consumes much more time. The reason is that the improved
global optimal position evaluation and simulated annealing pro-
cess need to consume more computing. Thus, this article can
reasonably recommend the algorithm: PSO-SA algorithm can
be used in the case of the minimum testing case set; the W-PSO
algorithm can be used in the case of the need to get the better
testing case set in a short time.

To demonstrate the PSO-SA algorithm’s capability to gener-
ate combinatorial testing covering arrays more intuitively, we
also compare PSO-SA with baselines through a line graph in
Fig. 6, where the ordinate represents the difference between the
minimum size of the covering array generated by each baseline
algorithm on various covering matrices and that of the PSO
algorithm.

Fig. 6 shows the capabilities of five algorithms to generate the
minimum covering arrays. The comparison results of various
algorithms show that the PSO-SA algorithm is better than other
algorithms in covering matrix CA4, CA8, CA10, VCA14, and
VCA15, but it is inferior to the PSO algorithm in the covering
matrix VCA12. It indicates that the proposed PSO-SA algorithm
can generate a smaller covering array in most cases. In other
words, the limitations and challenges faced by traditional PSO

techniques as well as the improvement brought by our novel
approach are clearly illustrated in Fig. 6, and the contrasts further
confirm the effectiveness of PSO-SA.

C. Threats to Validity

Despite the fact that promising results have been obtained
by using our novel technique, there are still some factors that
can influence our experiments in Section IV. For example, to
generate combinatorial testing cases, we select ten represen-
tative covering arrays in previous researches for analysis, and
the randomness could lower the generality of our evaluation.
Besides, more projects (i.e., arrays) could be included in our
datasets for the expansion of our experiments domain.

V. CONCLUSION

PSO has been intensively studied by researchers for its advan-
tages of easy implementation and fast convergence in test case
generations of combinatorial testing. However, PSO tends to fall
into local optimization. To overcome this challenge, this article
proposed PSO-SA, a novel PSO algorithm based on the SA
strategy, to generate covering arrays of any covering intensity.

The article optimized the inertia weight of PSO, proposed and
applied the inertia weight differential decrement strategy to the
generation of combinatorial testing covering arrays, compared it
with four PSO algorithms, and proved that the proposed strategy
can generate a smaller covering array.

We applied the PSO-SA algorithm to the generation of com-
binatorial testing covering arrays. Through the multiple compar-
ative experiments, we proved that this strategy can reduce the
covering array scale effectively.

In future, we will continue enhancing combinatorial testing
from many aspects, including further improving the capability
of PSO to jump out of locally optimal solutions, reducing the
scale of covering arrays, and better understanding the application
scenarios of combinatorial testing.

Authorized licensed use limited to: Wuhan University. Downloaded on August 10,2022 at 12:39:02 UTC from IEEE Xplore. Restrictions apply.

294 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 1, MARCH 2022

REFERENCES

[1] N. Peng, G. Ji, and Z. Qin, “Survey on automatic test case generation
algorithms for software testing,” Appl. Res. Comput., vol. 29, no. 2,
pp. 401–405, 2012.

[2] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Comput.
Surv., vol. 43, no. 2, pp. 11:1–11:29, 2011.

[3] D. Li, L. Hu, R. Gao, W. E. Wong, D. R. Kuhn, and R. N. Kacker, “Improv-
ing MC/DC and fault detection strength using combinatorial testing,” in
Proc. Companion 17th IEEE Int. Conf. Software Quality, Reliab. Security,
Prague, Czech Republic, 2017, pp. 297–303.

[4] Z. Wang, Y. Zhang, P. Gao, and S. Shuang, “Comparing fault detection
efficiencies of adaptive random testing and greedy combinatorial testing
for Boolean-specifications,” Int. J. Performability Eng., vol. 17, no. 1,
pp. 114–122, 2021.

[5] D. R. Kuhn and M. J. Reilly, “An investigation of the applicability of
design of experiments to software testing,” in Proc. 27th Annu. NASA
Goddard/IEEE Softw. Eng. Workshop, Greenbelt, MD, USA, 2002, pp. 91–
95.

[6] F. Medeiros et al., “A comparison of 10 sampling algorithms for config-
urable systems,” in Proc. 38th Int. Conf. Softw. Eng., Austin, TX, USA,
2016, pp. 643–654.

[7] A. B. Sanchez et al., “Variability testing in the wild: The Drupal case
study,” Softw. Syst. Model., vol. 16, no. 1, pp. 173–194, 2017.

[8] B. Garn and D. E. Simos, “Eris: A tool for combinatorial testing of
the Linux system call interface,” in Proc. IEEE 7th Int. Conf. Softw.
Testing, Verification Validation Workshops, Cleveland, OH, USA, 2014,
pp. 58–67.

[9] J. Petke, “Testing django configurations using combinatorial interaction
testing,” in Proc. Int. Symp. Search Based Softw. Eng., Bergamo, Italy,
2015, pp. 242–247.

[10] X. Yuan, M. B. Cohen, and A. M. Memon, “GUI interaction testing:
Incorporating event context,” IEEE Trans. Softw. Eng., vol. 37, no. 4,
pp. 559–574, Jul./Aug. 2011.

[11] R. E. Lopez-Herrejon et al., “A first systematic mapping study on combi-
natorial interaction testing for software product lines,” in Proc. IEEE 8th
Int. Conf. Softw. Testing, Verification Validation Workshops, Graz, Austria,
2015, pp. 1–10.

[12] L. Yu et al., “A combinatorial testing strategy for concurrent programs,”
Softw. Testing Verification Rel., vol. 17, no. 4, pp. 207–225, 2007.

[13] N. Mirzaei et al., “Reducing combinatorics in GUI testing of android
applications,” in Proc. IEEE/ACM 38th Int. Conf. Softw. Eng., Austin, TX,
USA, 2016, pp. 559–570.

[14] D. E. Simos et al., “Combinatorial methods in security testing,” Computer,
vol. 49, no. 10, pp. 80–83, 2016.

[15] For Standardization I O.ISO/IEC/IEEE 29119 Software Testing Standard
[EB/OL]. [Online]. Available: http://www.softwaretestingstandard.org/

[16] M. Robert, “Orthogonal Latin squares: An application of experiment de-
sign to compiler testing,” Commun. ACM, vol. 28, no. 10, pp. 1054–1058,
1985.

[17] P. M. Bueno, W. E. Wong, and M. Jino, “Improving random test sets using
the diversity oriented test data generation,” in Proc. 2nd Int. Workshop
Random Testing Co-located 22nd IEEE/ACM Int. Conf. Automated Softw.
Eng., Atlanta, GO, USA, 2007, pp. 10–17.

[18] K. Tatsumi, “Test case design support system,” in Proc. Int. Conf. Qual.
Control, Tokyo, Japan, 1987, pp. 615–620.

[19] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The AETG
system: An approach to testing based on combinatorial design,” Proc.
IEEE Trans. Softw. Eng., vol. 23, no. 7, pp. 437–444, Jul. 1997.

[20] Y.-W. Tung and W. Aldiwan, “Automating test case generation for the new
generation mission software system,” in Proc. IEEE Aerosp. Conf. Proc.,
vol. 1, Big Sky, MT, USA, 2000, pp. 431–437.

[21] K. C. Tai and Y. Lei, “A test generation strategy for pairwise testing,” IEEE
Trans. Softw. Eng., vol. 28, no. 1, pp. 109–111, Jan. 2002.

[22] N. Kobayashi, T. Tsuchiya, and T. Kikuno, “A new method for constructing
pair-wise covering designs for software testing,” Inf. Process. Lett., vol. 81,
no. 2, pp. 85–91, 2002.

[23] A. W. Williams, Software Component Interaction Testing: Coverage Mea-
surement and Generation of Configurations. Ottawa, ON, Canada: Univ.
Ottawa, 2002.

[24] R. Gao, L. Hu, W. E. Wong, H.-L. Lu, and S.-K. Huang, “Effective test
generation for combinatorial decision coverage,” in Proc. Companion 16th
IEEE Int. Conf. Softw. Qual., Rel. Secur., Vienna, Austria, 2016, pp. 47–54.

[25] S. A. Ghazi and M. A. Ahmed, “Pair-wise test coverage using genetic
algorithms,” in Proc. Congr. Evol. Comput., Canberra, ACT, Australia,
2003, pp. 1420–1424.

[26] Y. Liang and C. Nie, “The optimization of configurable genetic algo-
rithm for covering arrays generation,” Chin. J. Comput., vol. 35, no. 7,
pp. 1522–1538, 2012.

[27] C. Nie, H. Wu, Y. Liang, H. Leung, F. Kuo, and Z. Li, “Search based
combinatorial testing,” in Proc. 19th Asia-Pacific Softw. Eng. Conf., Hong
Kong, China, 2012, pp. 778–783.

[28] K. Li, L. Jia, and X. Shi, “IPSOMC: An improved particle swarm opti-
mization and membrane computing based algorithm for cloud computing,”
Int. J. Performability Eng., vol. 17, no. 1, pp. 135–142, 2021.

[29] B. S. Ahmed and K. Z. Zamli, “A variable strength interaction test suites
generation strategy using particle swarm optimization,” J. Syst. Softw.,
vol. 84, no. 12, pp. 2171–2185, 2011.

[30] X. Chen, J. Qi, D. Chen, and Q. Gu, “Applying particle swarm optimization
to pairwise testing,” in Proc. IEEE 37th Annu. Comput. Softw. Appl. Conf.,
Seoul, South Korea, 2010, pp. 107–116.

[31] J. Kari and Nurmela, “Upper bounds for covering arrays by Tabu search,”
Discrete Appl. Math., vol. 138, no. 1-2, pp. 143–152, Mar. 2004.

[32] W. Huayao and N. Changhai, “Particle swarm optimization for covering
array generation: Parameter optimization and adaptive algorithm,” J. Chi-
nese Computer Syst., vol. 33, no. 10, pp. 2259–2267, 2012.

[33] R. C. Eberhart and Y. Shi, “Comparing inertial weights and constriction
factor in particle swarm optimization,” in Proc. 2000 Congr. Evol. Comput.,
vol. 1, La Jolla, CA, USA, 2000, pp. 84–88.

[34] H. Wu, “Research on combinatorial testing and its fault detection ability,”
Ph.D. thesis, Nanjing University, 2018.

[35] H. Wu et al., “A discrete particle swarm optimization for covering array
generation,” IEEE Trans. Evol. Comput., vol. 19, no. 4, pp. 575–591,
Aug. 2015.

[36] Z. H. Zhan et al., “Adaptive particle swarm optimization,” IEEE Trans.
Syst., Man, Cybern., Part B: Cybern., vol. 39, no. 6, pp. 1362–1381,
Dec. 2009.

[37] J. Liang et al., “Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions,” IEEE Trans. Evol. Comput.,
vol. 10, no. 3, pp. 281–295, Jun. 2006.

[38] J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle swarm
optimizer,” in Proc. 2005 IEEE Swarm Intell. Symp., SIS 2005., Pasadena,
Cal, USA, 2005, pp. 124–129.

[39] L. S. Ghandehari et al., “A combinatorial testing-based approach to
fault localization,” IEEE Trans. Softw. Eng., vol. 46, no. 6, pp. 616–645,
Jun. 2020.

[40] H. Wu et al., “An empirical comparison of combinatorial testing, random
testing and adaptive random testing,” IEEE Trans. Softw. Eng., vol. 46,
no. 3, pp. 302–320, Mar. 2020.

[41] R. Tzoref-Brill, “Advances in combinatorial testing,” Adv. Comput.,
vol. 112, pp. 79–134, 2019.

[42] S. Sengupta, S. Basak, and R. A. Peters, “Particle swarm optimization:
A survey of historical and recent developments with hybridization per-
spectives,” Mach. Learn. Knowl. Extraction, vol. 1, no. 1, pp. 157–191,
2019.

[43] J. C. Bansal, “Particle swarm optimization,” in Evolutionary and Swarm
Intelligence Algorithms. Cham, Switzerland: Springer, 2019, pp. 11–23.

[44] G. Xu et al., “Particle swarm optimization based on dimensional learning
strategy,” Swarm Evol. Comput., vol. 45, pp. 33–51, 2019.

[45] Q. Luo et al., “Research on path planning of mobile robot based on
improved ant colony algorithm,” Neural Comput. Appl., vol. 32, no. 6,
pp. 1555–1566, 2020.

[46] N. Leite, F. Melício, and A. C. Rosa, “A fast simulated annealing algorithm
for the examination timetabling problem,” Expert Syst. Appl., vol. 122,
pp. 137–151, 2019.

[47] N. Hou et al., “An efficient GPU-based parallel tabu search algorithm
for hardware/software co-design,” Front. Comput. Sci., vol. 14, no. 5,
pp. 1–18, 2020.

[48] D. Tian and Z. Shi, “MPSO: Modified particle swarm optimization and its
applications,” Swarm Evol. Comput., vol. 41, pp. 49–68, 2018.

[49] K. Premalatha and A. M. Natarajan, “Hybrid PSO and GA for global maxi-
mization,” Int. J. Open Problems Comput. Math, vol. 2, no. 4, pp. 597–608,
2009.

[50] J. Liu and X. Qiu, “A novel hybrid PSO-BP algorithm for neural network
training,” in Proc. Int. Joint Conf. Comput. Sci. Optim., vol. 1, Sanya,
China, 2009, pp. 300–303.

Authorized licensed use limited to: Wuhan University. Downloaded on August 10,2022 at 12:39:02 UTC from IEEE Xplore. Restrictions apply.

http://www.softwaretestingstandard.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

