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Failure indexing is a longstanding crux in software debugging, the goal of which is to automatically divide
failures (e.g., failed test cases) into distinct groups according to the culprit root causes, as such multiple
faults residing in a faulty program can be handled independently and simultaneously. The community of
failure indexing has long been plagued by two challenges: (1) The effectiveness of division is still far from
promising. Specifically, existing failure indexing techniques only employ a limited source of software runtime
data, for example, code coverage, to be failure proximity and further divide them, which typically delivers
unsatisfactory results. (2) The outcome can be hardly comprehensible. Specifically, a developer who receives
the division result is just aware of how all failures are divided, without knowing why they should be divided
the way they are. This leads to difficulties for developers to be convinced by the division result, which in
turn affects the adoption of the results. To tackle these two problems, in this article, we propose SURE, a
viSUalized failuRe indExing approach using the programmemory spectrum (PMS). We first collect the runtime
memory information (i.e., variables’ names and values, as well as the depth of the stack frame) at several
preset breakpoints during the execution of a failed test case, and transform the gathered memory information
into a human-friendly image (called PMS). Then, any pair of PMS images that serve as proxies for two failures
is fed to a trained Siamese convolutional neural network, to predict the likelihood of them being triggered by
the same fault. Last, a clustering algorithm is adopted to divide all failures based on the mentioned likelihood.
In the experiments, we use 30% of the simulated faults to train the neural network, and use 70% of the
simulated faults as well as real-world faults to test. Results demonstrate the effectiveness of SURE: It achieves
101.20% and 41.38% improvements in faults number estimation, as well as 105.20% and 35.53% improvements in
clustering, compared with the state-of-the-art technique in this field, in simulated and real-world environments,
respectively. Moreover, we carry out a human study to quantitatively evaluate the comprehensibility of PMS,
revealing that this novel type of representation can help developers better comprehend failure indexing results.
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1 Introduction
Due to the increments in the scale and complexity of modern software systems, faulty programs
typically contain more than one fault [20, 26, 40, 83]. The co-existence of multiple faults has been
shown to be harmful for fault localization tasks, that is, the existence of two or more faults will
cause the localization of one or more of these faults to become harder [12, 20]. A mainstream way
to tackle the challenge of multi-fault localization is parallel debugging,1 in which a multi-fault
localization task is decomposed into several sub-single-fault localization tasks by dividing2 all
failures3 into distinct groups according to the culprit faults [18, 27, 29, 64, 75]. Such a division
process is generally referred to as failure indexing, the goal of which is to isolate the handling
of multiple faults into independent environments through the reorganization of failed test cases.
Failure indexing has been proven to be diversely useful. For example, it can effectively alleviate
the negative impact of multi-fault co-existence on fault localization. And for another example,
the derived sub-tasks can be handled by different developers simultaneously, thus improving the
efficiency of debugging [112].

For its promise, there are numerous works focusing on the topic of failure indexing [27, 34, 73].
Despite the fact that failure indexing has been integrated into many approaches or tools, it is
plagued by two longstanding challenges:

—The effectiveness of failure indexing is far from promising. As mentioned above, the mission of
failure indexing is to isolate the handling of multiple faults into separate environments by
dividing failed test cases. It is obvious that an effective failure indexing process should satisfy
two points: (1) The number of the derived fault-focused groups should be the same as the
number of faults (i.e., correct faults number estimation), and (2) Failures in the same group
should be triggered by the same fault, and conversely, failures in different groups should
have different root causes (i.e., promising clustering). Many pioneering studies have pointed
out that these two goals are difficult to achieve, because it is not easy to design an effective
failure proximity (comprising the fingerprinting function and the distance metric, we will
introduce them in detail in Section 2), which is the core of failure indexing [58]. The most
prevalent and advanced failure proximities to date are the code coverage (CC)-based one
and the statistical debugging (SD)-based one [34, 56]. However, they both rely on coverage
information, which can be easily trapped and thus delivering unsatisfactory results in practice
(we will further describe this point in Sections 2.2 and 3).

—The outcome of failure indexing is hard to comprehend. Given a collection of failed test cases,
a failure indexing process will index them to their root causes and thus produce several
fault-focused groups. However, developers who receive the result are only aware of how

1In parallel debugging, people generally consider faults that do not interfere with one another.
2In the current field of parallel debugging, clustering is typically utilized for such division. Thus we use these two terms
interchangeably in this article.
3In dynamic testing, failures are typically failed test cases. In this article, we use these two terms interchangeably.
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failures are divided, without knowing why they should be divided in the current manner. It is
recognized that software engineering is a human-centric discipline [71], the results provided
by automated debugging techniques still require being comprehended by the person who
performs the following task [12, 85, 98]. In fact, nearly 30 years ago, the comprehensibility of
software debugging tasks has been considered by researchers. Specifically, to make developers
better comprehend fault localization results, Agrawal et al. and Jones et al. used color to
visually reveal the linkage between program statements and failed/passed runs. These works
have been demonstrated to be effective in helping a user localize faults [2, 40]. Parnin and
Orso also realized this problem and carried out a study, explicitly indicating that human
factors played a critical role in software debugging tasks [62]. Moreover, Xie et al. suggested
integrating comprehension assistance into automated debugging, because the results delivered
by automated debugging techniques still require being comprehended by human developers
who perform the following jobs [98]. In 2023, Souza et al. continue highlighting the importance
of comprehension in software debugging tasks. They employed Jaguar [67], a spectrum-
based fault localization (SBFL) tool that visualizes fault localization results by coloring the
suspicious elements from red (high) to green (low), and investigated to which extent such
visualization provided hints for human developers to comprehend faulty behaviors [3]. The
aforementioned representative works have garnered more than 2,700 citations. That is to say,
comprehensibility has been recognized as an important topic in the field of software debugging.
Seeing that failure indexing is an important class of tasks in software debugging, we can claim
that comprehension matters in failure indexing: only when human developers comprehend the
machine-produced failure indexing result, they will be convinced by the result and would like
to further apply this result. Therefore, providing the failure indexing result and providing why
the result is obtained are both important. However, to the best of our knowledge, existing
studies only consider the former without focusing on the comprehensibility of failure indexing
results.

These two challenges are worth addressing because they are in line with two problems in practice,
respectively: First, the effectiveness of failure indexing determines how good failure indexing will be,
and second, the comprehensibility of the result determines whether the failure indexing result will
be adopted by human developers. In this article, we propose SURE, a viSUalized failuRe indExing
approach based on the program memory spectrum (PMS) for tackling the aforementioned
challenges:

—To further improve the effectiveness of failure indexing, we propose a novel type of failure
proximity, namely, the program memory (PM)-based failure proximity. The shortcoming of
using coverage to represent failures can be partly described by the propagation, infection,
execution (PIE) model [82], a classical theory in software testing and debugging. Specifically,
the PIE model has demonstrated that a failure can be detected only if the fault4 infects
the program’s internal state. However, with the coverage information only, it is very hard
to explore the faulty internal state in depth during the program execution, because being
covered is a necessary but not sufficient condition for triggering a failure. Thus, coverage cannot
extract the signature of failures in deep insight. Based on this intuition, we conjecture that
program internal dataflows (PM in our context) can be a finer-grained failure representation
when using coverage gives rise to unsatisfactory effectiveness, because program internal
dataflows can effectively embody program internal states.5 For the fingerprinting function, the

4In this article, we follow the practice of general fault localization to consider the non-omission fault.
5This conjecture has been verified by the experiments in Section 6.
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PM-based failure proximity mines and utilizes the runtime memory information (i.e., variables’
names, variables’ values, and the depth of stack frame, deeper insight to explore programs’
internal state than coverage) collected during the execution of a failed test case to represent it.
Specifically, we first employ SBFL techniques to determine several highly-suspicious program
statements, and set these statements as breakpoints. And then, we collect the runtime memory
information (i.e., variables’ names and values, as well as the depth of the stack frame) at the
preset breakpoints during executing a failed test case. We further reorganize the collected
runtime memory information into PMS, which is in the form of an image, to serve as the
proxy for a failed test case. And for the distance metric, we train a Siamese convolutional
neural network (CNN) to predict the distance between a pair of PMS images (i.e., a pair of
failed test cases), which reflects the likelihood that they are triggered by the same fault.

—To make failure indexing results comprehensible to human developers, we borrow the idea of
Agrawal et al.’s work and Jones et al.’s work to make the failure indexing result visualized. In
their work, they used color to visually map program statements in test suite executions, and
help developers pinpoint faulty statements intuitively [2, 40]. In this article, we design a novel
algorithm to reorganize the collected runtime memory information (which is not easy for
human developers to recognize) into PMS images (which are in a human-friendly form). Specif-
ically, for a set of runtime memory information collected during running a failed test case, we
first convert variables’ names and values into the numeric form according to the Ascii code of
characters, and then regard variables’ names, variables’ values, and the depth of the stack frame
as the three channels of Red, Green, and Blue (RGB), a broadly-used additive color model,
which will be further introduced in Section 4.3), to represent this failure in the form of PMS. As
such, each failed test case is represented as a visualized image, so human developers can be eas-
ily aware of why all failures are divided the way they are when they receive the failure indexing
result.

In the experiments, we obtain four C projects, Flex, Grep, Gzip, and Sed from the Software
Infrastructure Repository (SIR) [21], and employ a mutation tool to inject simulated faults into
the projects to generate faulty versions that contain one, two, three, four or five bugs (also referred
to as 1-bug, 2-bug, 3-bug, 4-bug, and 5-bug faulty versions, respectively). Besides, we also use five
Java projects, Chart, Closure, Lang, Math, and Time from Defects4J [42], as our benchmarks, and
gather 1 ∼ 5-bug real-world faulty versions according to the test case transplantation strategy
proposed by An et al. [5]. In total, we generate 1,000 C simulated faulty versions and gather 100
Java real-world faulty versions. We use only 30% of the simulated faulty versions to train, and use
70% of the simulated faulty versions as well as real-world faulty versions to test. Experimental
results significantly demonstrate the promise of the proposed approach: SURE can achieve 101.20%
and 41.38% improvements in faults number estimation, as well as 105.20% and 35.53% improvements
in clustering, compared with the state-of-the-art technique in the field, in simulated and real-world
environments, respectively.

Moreover, to quantitatively measure to which extent the proposed visualized representation
of failed test cases (i.e., PMS images) can be comprehensible to human developers, we conduct a
human study involving 15 graduate students in Computer Science from Wuhan University and
three senior programmers in top-tier Internet companies in China. The results show that compared
with the most advanced and prevalent failure representation to date (i.e., the ranking-based and
coverage-based ones), the representation of PMS images is more comprehensible and cost-effective:
The comprehensibility of PMS images is 140.00% and 128.57% higher than the two baselines, while
the time cost is only 14.57% and 14.32% of the two baselines, respectively.
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The main contributions of this article are as follows:

(1) A novel failure indexing approach. We propose a visualized failure indexing approach, SURE,
which utilizes the PMS to represent failures and uses Siamese CNNs to measure the distance
between failures.

(2) A visualized representation of failed test cases. The PMS is a visualized representation of failed
test cases, which is in a human-friendly form (i.e., images) and thus can make failure indexing
outcomes more comprehensible for human developers.

(3) A comprehensive evaluation. We use both simulated and real-world faults in the experiments
for more robust evaluation. It is worth mentioning that the training phase is performed on a
small set of simulated faults while the test is conducted on a larger set of simulated faults
and real-world faults. We also carry out a human study to quantitatively demonstrate the
comprehensibility of the proposed PMS.

(4) A publicly available repository . We release the experimental data and code, as well as the ma-
terial of the human study at https://github.com/SURE-Repo/SURE, to facilitate any intention
of replication or reuse.

The remainder of this article is organized as follows: Section 2 introduces the background
knowledge and emphasizes the motivation of this article. Section 3 provides a motivating example.
Section 4 describes the technical details of SURE, and gives a running example to facilitate compre-
hension. Section 5 lists the research questions, datasets, evaluation metrics, and so on. Section 6
analyzes the experimental results. Section 7 discusses some interesting topics. Section 8 is about
the threats to validity. Section 9 reports related works. Conclusions and directions for future work
are proposed in Section 10.

2 Background
2.1 Failure Indexing
Parallel debugging is a well-recognized strategy for multi-fault localization, one of the most tedious
and time-consuming problems in software testing and debugging [17, 45, 84, 92, 111]. The core
of parallel debugging is to correctly divide all failures into distinct groups according to their root
causes, i.e., failure indexing, thus multiple faults can be localized in isolated environments. It is
obvious that failure indexing will directly determine the effectiveness of parallel debugging: the
more promising failure indexing is, the better parallel debugging [38, 54, 94].

A collection of research has pointed out that failure indexing is indeed a difficult task. Failure
indexing typically involves three components: A fingerprinting function that represents failures
in a mathematical and structured form, a distance metric that calculates the distance between
the proxies for failures, and a clustering algorithm that divides all failures into several groups
based on the calculated distance information. Previous studies have made it clear that there is no
clustering technique that is universally applicable in uncovering the variety of structures present
in multidimensional datasets [35]. Thus, the most essential factors of failure indexing are the
fingerprinting function and the distance metric (these two components are called failure proximity).

2.2 Fingerprinting Function
The directly available information regarding failed test cases to be indexed is twofold: the input data
and the testing result (i.e., failed), which is too limited to effectively differentiate them. To tackle
this problem, researchers typically design fingerprinting functions to mine dynamic information at
runtime, so as to further extract the signature of failed test cases and use such data to represent
failed test cases [16, 56, 65].
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Among off-the-shelf fingerprinting functions, the CC-based strategy is the most prevalent
currently [19, 32, 34], while the SD-based strategy is the most sophisticated and advanced [27,
38, 53, 73]. Here we use a faulty program containing ; executable statements as an example. The
CC-based fingerprinting function extracts the signature of failures from the execution path of
failed test cases. It will represent failed test case 5 as a numerical vector of length ; . There are
two variants of the CC-based fingerprinting function: �>Eℎ8C and �>E2>D=C . As for the former, the
8th element of the numerical vector that represents 5 will be set to one (1) if 5 covers the 8th

statement B8 , and zero (0) otherwise. And as for the latter, the 8th element of the numerical vector
that represents 5 will be set to the execution frequency of B8 if 5 covers B8 , and zero (0) otherwise.
The SD-based fingerprinting function extracts the signature of failures from the suspiciousness
ranking list of program statements. Specifically, a failed test case 5 is first combined with passed test
cases )( , then the test suite 5 ∪)( is executed on the faulty program and the coverage is collected
simultaneously. Later, an SBFL technique is employed to calculate the suspiciousness value of each
program statement based on coverage information [60, 97, 103, 107], and produce a ranking list in
which ; program statements are descendingly ordered by their suspiciousness. As such, 5 can be
represented as this ranking list of length ; .

Despite the promise of the CC and the SD-based strategies, they share a common bottleneck: only
relying on program coverage. Specifically, the intuition of the CC-based strategy is that failures
triggered by the same fault should also have the same CC, and vice versa [108]. Thus, it creates
numeric vectors that reflect the coverage information during the execution to represent failed test
cases. The intuition of the SD-based strategy is that failures triggered by the same fault should target
the same fault location, and vice versa [56, 58]. Thus, it incorporates SBFL techniques to further
analyze raw coverage information, to convert it to a suspiciousness ranking list that suggests the
fault location and thus can represent failed test cases. Obviously, both CC and SD purely rely on
coverage information, which cannot work well if the coverage of the failures triggered by different
faults is the same (we will exemplify such a situation in Section 3). That is to say, even the most
prevalent and advanced fingerprinting functions to date are still not able to deliver satisfactory results.

2.3 Distance Metric
In failure proximity, the design of the distance metric is not an independent task, because it is tightly
related to the form of the fingerprinting function. For example, the CC-based strategy represents
a failed test case as a numerical vector and thus typically uses the Euclidean distance metric
[81], because the Euclidean distance metric is a suitable and cheap way to handle the similarity
measurement between such numerical vectors [34]. For another example, the SD-based strategy
represents a failed test case as a ranking list and thus typically uses the Kendall tau distance metric
[46], because the Kendall tau distance metric can properly measure how similar two ranking lists
are by counting the number of pairwise disagreements between them [27]. From these, we can
see that the distance metric is inseparable from the fingerprinting function: only by designing a
well-tailored distance metric can the signature of failures extracted by the fingerprinting function be
fully exploited.

3 Motivating Example
We use a motivating example in Table 1 to reveal the shortcoming of the CC-based and SD-based
failure proximities mentioned above. This toy program containing 17 statements (B1, B2,…, B17) is
used to identify and replace certain words in the input string, and then output the modified string
and the log message. Specifically, if an input string contains “wordNone” or “wordNtwo,” these two
words will be replaced with “*1*” and “*2*,” respectively. The log message records the operation of
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Table 1. A Motivating Example

S Program t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

B1 public static String process(String s){ • • • • • • • • • • • •

B2 if(s.contains(“*1*”) || s.contains(“*2*”)){ • • • • • • • • • • • •

B3 return “”;} • •

B4 int sign = 0; • • • • • • • • • •

B5 int sum_1 = 0; • • • • • • • • • •

B6 sum_1 = s.contains(“wordNone”) ? 1 : 0; • • • • • • • • • •

B7 sign += sum_1; • • • • • • • • • •

B8
s = s.replaceAll(“wordNone,” “?1?”);

//Fault1: “?1?” should be “*1*”
• • • • • • • • • •

B9 int sum_2 = 0; • • • • • • • • • •

B10 sum_2 = s.contains(“wordNtwo”) ? 2 : 0; • • • • • • • • • •

B11 sign += sum_2; • • • • • • • • • •

B12 s = s.replaceAll(“wordNtwo,” “*2*”); • • • • • • • • • •

B13 if(sign == 3){ • • • • • • • • • •

B14 return “both pattern recognized”;} •

B15
String msg = sign == 1 ?
“wordNone recognized” : “pass”;

• • • • • • • • •

B16

msg = sign > 2 ?
“wordNtwo recognized” : msg;

//Fault2: “>2” should be “==2”
• • • • • • • • •

B17 return s + “//” + msg;} • • • • • • • • •

Result F F F F F F S S S S S S

Table 2. The Representation for 52 ∼ 56

Failure Proximity Representation
The CC-based [1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1]
The SD-based [1, 1, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 15, 15, 15]

the program, for example, “wordNone recognized,” “wordNtwo recognized,” “both pattern recognized,”
and “pass.” In this program, statements B8 and B16 each contain a fault.

Given a test suite containing 12 test cases: C1 = “speak wordNone,” C2 = “wordNone,” C3 = “word-
Nonecontained,” C4 = “wwwwordNoneeee,” C5 = “has wordNtwo,” C6 = “wordNtwo,” C7 = “,” C8 = “midd*1*le,”
C9 = “*1*2*,” C10 = “a normal sentence,” C11 = “wordnonewordNtw,” and C12 = “wordNone and wordNtwo.”
The coverage information of them is given in Table 1, where a dot in the cell [C8 , B 9 ] indicates that C8
covers B 9 (8 = 1, 2,…, 12, and 9 = 1, 2,…, 17). Among these test cases, C1 ∼ C6 are failed test cases due
to the inconsistency between the actual output and the expected output (C1 ∼ C6 can be referred
to as 51 ∼ 56, respectively). More concretely, 51 ∼ 54 are triggered by �0D;C1, while 55 and 56 are
triggered by �0D;C2. The remaining six test cases, i.e., C7 ∼ C12, pass the test (they can be referred to
as )( ).

As mentioned in Section 2.2, the CC-based failure proximity represents a failure as a CC vector,
i.e., the corresponding column in Table 1. For example, 51 covers all program statements except B3
and B14, thus, as for �>Eℎ8C , 51 can be represented as a binary vector of length 17: [1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 1, 1, 1]. By observing Table 1, we can find that the CC-based representation for
the other five failed test cases (52 ∼ 56) is the same as that for 51, as shown in the second row of
Table 2. And as for�>E2>D=C , the number “1” in the binary vector will be replaced with the execution
frequency, which does not help to differentiate the six failures either. Thus, neither �>Eℎ8C nor
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�>E2>D=C can effectively perform failure indexing in this example, i.e., the scenario where failures
caused by different faults have the same execution coverage.

Also recall the description in Section 2.2, the SD-based failure proximity represents a failed test
case as a suspiciousness ranking list of program statements based on this failed test case and passed
test cases )( . For example, to represent 51, we can combine 51 with )( to form a new test suite,
51 ∪ )( , run this test suite on the program, and collect the coverage information. The coverage
will be delivered to an SBFL technique to calculate risk values of being faulty for each program
statement, and then produce a suspiciousness ranking list by descendingly ordering statements by
their risk values. Here we employ a recognized SBFL technique, GP03 [105], whose expression is
given in Formula (1), to complete this process6.

(DB?828>DB=4BB�%03 =

√
|# 2

��
−
√
#�( |. (1)

The generated suspiciousness ranking list is [1, 1, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 15, 15, 15]7, which
will serve as the proxy for 51. However, the SD-based representation for the other five failed test
cases (52 ∼ 56) is the same as that for 51, as shown in the third row of Table 2. That is, despite the
incorporation of SBFL techniques, the SD-based failure proximity can still not differentiate the
six failed test cases, because the SD-based strategy essentially relies on program coverage as well,
while the six failed test cases triggered by different faults here exhibit the same execution coverage.

That is to say, when failures caused by different faults have identical coverage, even the most
widespread and state-of-the-art failure proximities are still not enough to deliver promising out-
comes. This situation, is, unfortunately, very common in practice, as a prestigious work in the field
of failure indexing pointed out previously:

“A significant portion of execution profiles would be the same even
if these failures are due to different faults” [58].

Thus, developing a better failure proximity is of great significance.
Given observed failures, the essence of failure indexing tasks is to analyze the linkage among

observed failures according to the underlying faults. However, observed failures are abnormal
behaviors exposing at the interface of programs, while underlying faults reside at the level of
code, causing a gap between failures and faults. The PIE model, a classical theory in the field
of software testing and debugging, has demonstrated that a failure can be detected only if the
fault infects the programs’ internal state. This provides a potential perspective for alleviating the
gap between observed failures and underlying faults: utilizing data from the programs’ internal
state to fingerprint failures. Actually, previous works have preliminarily attempted to mine the
programs’ internal state for failure indexing. For example, both CC and SD-based failure proximities
employ coverage information as a representative of the programs’ internal state. However, with the
coverage information only, it is very hard to explore the faulty internal state in depth during the
program execution, because being covered is a necessary but not sufficient condition for triggering
a failure. Thus, coverage cannot extract the signature of failures in deep insight, it is necessary to
utilize another type of data as a representative of the programs’ internal state. Here we naturally
think of PM information (including variables’ name, variables’ value, and the depth of the stack
frame), because PM information can intrinsically explore the programs’ internal state, it is an intuitive

6SBFL techniques typically involve four spectrum notations: #�� and #�( represent the number of test cases that execute
the statement and return the testing result of failed or passed, respectively, #*� and #*( represent the number of test
cases that do not execute it and return the testing result of failed or passed, respectively.
7In light of the experience of previous works [27, 34, 99], if several statements with the same suspiciousness form a tie, the
rankings of all statements in the tie will be set to the beginning position of this tie.
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way to understand underlying faults and thus can be one reasonable candidate to represent failures
[37, 86, 102]. As a reminder, in recent years, researchers in the field of fault localization (another
important sub-domain of software debugging) have been attempting to employmemory information
(e.g., runtime variable information) to strengthen traditional fault localization techniques that are
based on coverage information only. For example, Wen et al. claimed that “developers often set
breakpoints at specific locations to inspect if abnormal values will be observed for concerned variables,
this strategy can facilitate developers in understanding the target fault” [86]. Their work indicates
that the underlying fault could be analyzed by observing runtime variables’ values. Similarly, Jiang
et al. stated that “fault-relevant variables may exhibit different values in failed and passed test runs,
and variables that have higher discrimination ability have a larger possibility to be the root causes
of the failure” [37]. This work demonstrates the capability of variables’ values in discriminating
failed and passed runs, indicating the potential of variables’ values in discriminating failed runs
that are triggered by different faults. Besides, Yang et al. analyzed developer behavior in software
debugging, and concluded that setting breakpoints and viewing variables are important to guide
developers to understand faults [102]. To summarize, program runtime memory information has
the potential to be an effective source of data for fingerprinting functions in failure indexing. Based
on the above intuition, in this article, we propose a novel failure indexing approach SURE, to make
the abstract potential of memory information in failure representation concrete.

Moreover, neither the CC-based nor the SD-based failure proximity represents failures in a
human-friendly form, it is hard for human developers to comprehend the failure indexing result
based on such forms of failure representation. Specifically, whether a numerical vector in the
CC-based strategy or a ranking list in the SD-based strategy, its length is equal to the number
of executable statements of the faulty program. Unlike our motivating example, in real-world
debugging, a faulty program can easily have tens of thousands of statements. As a consequence
of which, the proxy for a failure will be a numerical vector or a ranking list of great length. It is
obvious that in such a scenario, given failure indexing results, it is not easy for human developers
to comprehend why these numerical vectors or ranking lists should be clustered into the same (or
different) group(s). SURE further converts the raw memory information to PMS, which is in the
form of visualized images, human developers can easily comprehend the failure indexing results
given such human-friendly failure representation.

4 Approach
The PM-based failure proximity utilizes the runtime memory information to represent failures, and
measures the distance between failures based on the characteristics of memory information. Based
on this description, we propose our approach, SURE. The overview of SURE is depicted in Figure 1.
For a faulty program under test and a given test suite containing multiple failed test cases, SURE
performs the following steps to achieve failure indexing:

(1) Breakpoint determination. We first employ an SBFL technique to obtain the suspiciousness
of all program statements, and then set the Top-G% riskiest statements as the breakpoints
(the determination of the value of G will be investigated in the first research question of
Section 5.1).

(2) Collection of runtime PM . For a failed test case, we run it on the faulty program, and collect
the runtime memory information at the preset breakpoints. Specifically, the runtime memory
information we collect includes variables’ names, variables’ values, and the depth of the
stack frame.

(3) Generation of PMS. The collected memory information will be converted to PMS, which is in
the form of visualized images in a human-friendly way.
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Fig. 1. Overview of SURE.

(4) Model training. For any pair of PMS images (i.e., any pair of failed test cases), we will assign
a label to it: If these two failed test cases are triggered by the same fault, the label is one (1),
indicating that the similarity between them should be one (1). Otherwise, if these two failed
test cases have different root causes, the label is zero (0). Then, we feed such labeled pairs of
PMS images to a Siamese CNN to train.

(5) Prediction. Once the model is trained, it can be used to handle the prediction of the similarity
between two unseen PMS images.

(6) Distance calculation. For the value of the similarity between a pair of failed test cases, we
first subtract it from 1, and then multiply this difference by a parameter, (8I4�8E , as the final
distance. (8I4�8E reflects the divergence between the sizes of two PMS images.

(7) Clustering. The clustering algorithm will receive the distances between any pair of failed test
cases, and based on which produces one or more clusters of failed test cases.

We detailedly introduce the above seven steps of SURE in Sections 4.1–4.7, respectively. Moreover,
we give a running example to facilitate readers’ comprehension in Section 4.8.

4.1 Breakpoint Determination
Given a faulty program % containing ; statements, a test suite ) comprising failed test cases )� and
passed test cases )( ()� ∪)( = ) and )� ∩)( = ∅). We employ an SBFL technique to calculate the
suspiciousness of ; program statements of % based on ) , and rank all statements in descending
order of suspiciousness. Then, we determine the Top-G% riskiest statements as the breakpoints (the
value of G will be investigated in the first research question of Section 5.1). As such, we can get @
breakpoints, 1?1, 1?2,… 1? 9 ,…, 1?@ , where the value of @ is b ; × G% c, and 1? 9 is the breakpoint
ranked 9 th in suspiciousness.

The intuition behind this strategy is that the statements with higher risk values are more likely
to be faulty, and runtime memory information gathered at these positions could have a stronger
capability to reveal faults, thus can contribute more to representing failures.

As a reminder, SBFL is not required to determine the exact position of faults in this process. We
simply need to identify a collection of highly-risky program statements, which are sufficient to
specify breakpoints that can monitor the execution of abnormal programs.
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4.2 Collection of Runtime PM
For the 8th failed test case in )� , 58 ∈ )� , executing it on % and gathering the runtime memory
information at each breakpoint. Specifically, the collected memory information of 58 is:

"�8 =
{
1?′1 : +

8
1 , 1?

′
2 : +

8
2 , ..., 1?

′
9 : +

8
9 , ..., 1?

′
@ : + 8

@

}
, (2)

where + 8
9 is the memory information collected at 1?′9 during executing 58 . Notice the difference

between 1?′9 here and 1? 9 in Section 4.1: 1?′9 is the 9 th breakpoint to be executed during the actual
running of 58 . This arrangement integrates control flows information into our method, because
program control flows are also helpful for failure representation to an extent. Supposing that there
are<8 9 variables queried at 1?′9 during the running of 58 , + 8

9 comprises three lists with length<8 9 :
+=0<4

8
9 , +E0;D4

8
9 , and +34?Cℎ

8
9
:

+=0<4
8
9 contains the names of the<8 9 variables queried at 1?′9 during running 58 :

+=0<4
8
9 = [=0<41, =0<42, ..., =0<4<8 9

], (3)

+E0;D4
8
9 contains the values of these<8 9 variables:8

+E0;D4
8
9 = [E0;D41, E0;D42, ..., E0;D4<8 9

], (4)

+34?Cℎ
8
9
contains the depth of the stack frame of these<8 9 variables:

+34?Cℎ
8
9
= [34?Cℎ1, 34?Cℎ2, ..., 34?Cℎ<8 9

] . (5)

If we are from the perspective of a failed test case, that is, considering all breakpoints together,
we can integrate the memory information collected at all breakpoints into a hunk:

+ 8
=0<4 = +=0<4

8
1 ⊕+=0<4

8
2 ⊕ ... ⊕+=0<4

8
9 ⊕ ... ⊕+=0<4

8
@ (6)

+ 8
E0;D4

= +E0;D4
8
1 ⊕+E0;D4

8
2 ⊕ ... ⊕+E0;D4

8
9 ⊕ ... ⊕+E0;D4

8
@ (7)

+ 8
34?Cℎ

= +34?Cℎ
8
1 ⊕+34?Cℎ

8
2 ⊕ ... ⊕+34?Cℎ

8
9
⊕ ... ⊕+34?Cℎ

8
@

(8)

where ⊕ denotes the append operation between two lists. We use<8 to denote the length of + 8
=0<4 ,

+ 8
E0;D4

, and + 8
34?Cℎ

, which is the number of variables queried at all breakpoints during the running
of 58 :

<8 =
��+ 8
=0<4

�� = ��+ 8
E0;D4

�� = ���+ 8
34?Cℎ

��� =<81 +<82 + ... +<8 9 + ... +<8@ . (9)

During the execution of a failed test case, when the program stops at a breakpoint, only the
memory data at the position before the execution of that breakpoint can be collected. To ensure
that memory information is gathered regarding the predetermined positions produced by SBFL,
when faulty programs stop at each of the breakpoints, we continue executing a further step and
then carry out the collection operation. Besides, if a program statement is executed for more than
once, we collect variables’ values when the execution is completed, since the latest value reflects
the entire accumulation of the execution. As a reminder, for the sake of cost saving, if a program
statement contains function calls, we concentrate on the original location of the preset breakpoint
rather than iteratively navigating to the callee to query memory information (Experiments in
Section 6 demonstrate that this strategy is good enough for failure indexing).
8In our experiments, we find that regarding a variable’s value as a string is beneficial for distance measurement. For some
special types of variables, further action will be taken. For example, for a pointer, we will further index its value by address.
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Fig. 2. Workflow of PMS images generation.

4.3 Generation of PMS
For each 58 ∈ )� , we have collected the runtime memory information regarding it, i.e., "�8 . Now
we introduce based on "�8 , how to generate the corresponding program memory spectrum %"(8 .

The workflow of the generation of PMS images is illustrated in Figure 2. Specifically, "�8 is a
matrix with the shape of (1 ×<8 × 3), as shown in the leftmost sub-figure of Figure 2, where<8

is the number of variables queried at all breakpoints during the running of 58 , and “3” indicates
the three dimensions: variables’ names, variables’ values, and the depth of the stack frame. The
arrangement of this (1 ×<8 × 3) matrix is in the order of execution of breakpoints. Specifically, + 8

1 ,
i.e., the runtime memory information collected at the first executed breakpoint during running
58 , is at the top. Similarly, + 8

@ , i.e., the runtime memory information collected at the last executed
breakpoint (there are @ breakpoints in total) during running 58 , is at the bottom.

In practical development, the value of<8 is generally very large, thus the shape of this (1×<8 ×3)
matrix is quite unbalanced. We reshape this matrix to a (d√<8e × d√<8e ×3) matrix. The principle of
this reshaping process is “row first, column second.” Specifically, we take the first d√<8e elements
from top to bottom in the (1×<8 × 3) matrix as the first column of the (d√<8e × d√<8e × 3) matrix,
and then take the (d√<8e + 1)th to the 2d√<8eth elements from top to bottom in the (1 ×<8 × 3)
matrix as the second column of the (d√<8e × d√<8e × 3) matrix, and so on. Notice that if<8 is not
a perfect square number, few columns on the far right of the (d√<8e × d√<8e × 3) matrix cannot
be filled. In such a scenario, the few remaining elements will be set to the number zero. After the
reshaping process is completed, a (d√<8e × d√<8e × 3) matrix can be obtained, as shown in the
middle sub-figure of Figure 2.

The reshaped matrix can be regarded as three (d√<8e × d√<8e × 1) sub-matrices: [:, :, 0], [:, :,
1], and [:, :, 2], in which the first sub-matrix is actually + 8

=0<4 , and the second as well as the third
sub-matrices are + 8

E0;D4
and + 8

34?Cℎ
, respectively. Among them, the elements of + 8

=0<4 and + 8
E0;D4

are
in the form of characters, and the elements of + 8

34?Cℎ
are integers. To make them have a uniform

format, we employ an existing method in the reference [52] to convert elements of+ 8
=0<4 and+ 8

E0;D4

from the character form to the numeric form. Specifically, for a variable’s name or a variable’s
value in the string form (denoted as BCA ), we use the following formula to convert it to an integer
(denoted as BCA0B2 ):

BCA0B2 =

|BCA |∑
8=0

(8 + 1) ∗�B288 (BCA [8]), (10)

where �B288 () gets the Ascii code given a character (the strategy of converting strings to values by
employing Ascii codes has been adopted by many previous works [59, 61, 80]). The multiplication
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by (8 + 1) is to handle the case where two strings have the same batch of characters but in different
order. For example, a string “�401” can be converted to an integer 611, which is calculated by
1 ∗�B288 (‘�’) + 2 ∗�B288 (‘4’) + 3 ∗�B288 (‘0’ ) + 4 ∗�B288 (‘1’).

Now, each element of the (d√<8e × d√<8e × 3) matrix is already an integer, this three-channel
matrix is ready to be transformed into a colored image. Here we employ RGB, a broadly-used
additive color model, to complete this transformation process, because of its prevalence, availability,
and simplicity. In RGB, three primary colors each have values ranging from 0 to 255, they can be
combined together in various ways to reproduce a broad array of colors in the visible spectrum
[23, 31]. To make the (d√<8e × d√<8e × 3) matrix adapt to the RGB model, we normalize the
elements in each of its sub-matrices, namely, [:, :, 0], [:, :, 1], and [:, :, 2] separately, according to
the mentioned value range of RGB. The normalization can also alleviate the imbalance among the
three dimensions, because the three sub-matrices reflect different resources of memory information
thus have different scales. After normalization, the (d√<8e × d√<8e × 3) matrix can be directly
transformed into a colored image, as shown in the rightmost sub-figure of Figure 2.

One of the motivations for transforming runtime memory information into PMS images is to
facilitate the following task of distance calculation. Specifically, memory information is raw data
collected for failure representation, its scale could be typically large, and its form is not easy to
recognize or handle by machines either. Images are a proper candidate form to rephrase raw memory
data, because the form of images can effectively integrate various sources of information of memory
data into a single block, such a re-representation for raw data can provide well-organized and highly-
structured objects for the downstream deep learning technique that performs distance calculation.
Moreover, the form of visualized images can also boost human developers’ comprehension of failure
indexing results, because images can be smoothly recognized by human beings at a glance.

4.4 Model Training
The training phase of SURE is illustrated in the upper part of Figure 1. Specifically, for a pair of failed
test cases, we first collect the corresponding two sets of memory information on the faulty program
with breakpoints, and then transform them into two PMS images, respectively, as mentioned in
Sections 4.1–4.3.

We use the idea of Siamese learning to construct a similarity prediction model for two failed
test cases (in the form of PMS images), because Siamese learning is a classical supervised learning
strategy in similarity learning tasks [11, 13, 15, 72]. The goal of a Siamese learning-based model is
to learn a similarity metric between pairs of input samples, it typically consists of two identical
sub-networks for feature extraction that share the same structure and weights, as well as fully
connected layers that are responsible for taking the learned representations from the mentioned
feature extraction networks, thus producing a final output that reflects the similarity between two
input samples.

The architecture of our Siamese learning model is designed as follows: two identical feature
extraction networks (will be specified in the second research question of Section 5.1), and two
fully connected layers (with a ReLU activation function in between). The loss function we use
is the binary cross entropy loss, which is commonly used in deep learning especially for binary
classification tasks, as shown in Formula (11):

! = − 1
#

#∑
8=1

[~8 log (?8 ) + (1 − ~8 ) log (1 − ?8 )] , (11)

where # is the number of the data samples, ~8 is the true binary label for the 8th sample, and ?8 is
the predicted probability that the 8th sample is positive. As a reminder, the true binary label of a pair
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of PMS images is whether “1” (i.e., these two failed test cases are triggered by the same fault, thus
the similarity between them should be one) or “0” (i.e., these two failed test cases have different
root causes, thus the similarity between them should be zero). We denote pairs of PMS images with
the label “1” as positive samples, while denote pairs of PMS images with the label “0” as negative
samples.

In particular, we use only 30% of the simulated faults to train the model, and use 70% of the
simulated faults as well as real-world faults to test the model (please refer to Section 5.3 for the
details of the faults used in the experiments).

4.5 Prediction
Once the similarity prediction model is trained, it can be used to predict the similarity between
two unseen PMS images (i.e., two failed test cases). This similarity reflects the likelihood of these
two failures being triggered by the same fault. Before sending two images to the model, we first
preprocess them into a uniform size. This is because handling two images with different sizes is
hard for Siamese-based models, in light of the structure of the two feature extraction networks
must be identical.

4.6 Distance Calculation
The output of our Siamese learning model is the similarity between two failures. Before sending the
value of the produced similarity to the downstream clustering algorithm, we further process it by
Formula (12), to make up for the loss caused by harmonizing the sizes of images in the previous step.

�8BC0=24 = (1 − (8<8;0A8C~) × (8I4�8E . (12)

We first explain the first half of this formula, i.e., “1− (8<8;0A8C~.” The similarity produced by the
Siamese model measures how similar two PMS images are. To adapt it for clustering algorithms,
we subtract the value of the similarity between two failures from one, to reflect how dissimilar
they are. Next, we explain the multiplication of the factor (8I4�8E . As mentioned in Section 4.3,
a PMS image representing the failed test case 58 is a square whose side length is d√<8e, where
<8 is the number of variables queried at all breakpoints during the execution of 58 . It is obvious
that different 58 may correspond to different<8 , thus resulting in different side lengths of PMS
images. Considering that it is hard for Siamese models to handle two images with different sizes, in
the prediction phase, we preprocess two input images into the same size before feeding them to
the model. But as mentioned previously, the side length of PMS images embodies the number of
queried variables during running a failed test case, which can reveal the characteristics of a failure
to some extent, and thus can also contribute to the distance measurement between two failed test
cases. To alleviate this issue, we design (8I4�8E , a factor that is able to quantitatively reflect the
divergence between the sizes of two images. Specifically, (8I4�8E is calculated by dividing the side
length of the larger image by the side length of the smaller image.

4.7 Clustering
In Section 2.1, we have pointed out that there is no clustering technique that is universally applicable
in uncovering the variety of structures present in multidimensional datasets [35]. Therefore, we
employ the clustering component of MSeer [27], the state-of-the-art failure indexing technique to
date, to complete the clustering phase of SURE. The clustering algorithm is twofold, namely, the
faults number estimation and the clustering. The former aims to predict the number of clusters
(i.e., the number of faults) given the distance information between data samples (i.e., failed test
cases), and the latter is responsible for clustering data samples (i.e., failed test cases) into one or
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more groups. Next, we give a concise description of these two steps, for more details please refer to
the reference [27].

For the faults number estimation. It is well-recognized that one of the trickiest challenges in
clustering lies in the estimation of the number of clusters [25, 48, 78]. Putting it into the context
of failure indexing, we can claim that predicting the number of faults given a number of failures
is very important. The adopted clustering algorithm presented a novel mountain method-based
approach inspired by the previous works [14, 101], to perform the faults number estimation and the
assignment of initial medoids to these clusters at the same time. Specifically, the adopted clustering
algorithm first calculates a potential value for each failed test case according to the density of its
surroundings, such a potential value is used to measure the possibility of a data point being set as a
medoid. And then, (1) The failure with the highest potential value will be chosen as the current
medoid. (2) The potential values of all failed test cases will then be updated in accordance with their
distance from the newest medoid. (3) Repeating the above two steps iteratively, until the maximum
potential value falls within a certain threshold.

For the clustering. Once the number of clusters and the initial medoids are determined, all failures
are ready to be clustered. The adopted clustering algorithm utilizes K-medoids, a widely-used
clustering strategy, to complete this process. The K-medoids strategy sets actual (not virtual)
data points as medoid and thus can be more applicable to SURE, because the mean of memory
information is difficult to define. Moreover, the K-medoids strategy has been shown to be very
robust to the existence of noise or outliers [44].

4.8 Running Example
In the motivating example in Section 3, we use a toy program to show that the most prevalent
and advanced approach to date can still not good enough to produce satisfactory failure indexing
results. That toy program successfully reveals the bottleneck of existing approaches with only
17 program statements. But such a small-scale program is not suitable to illustrate the workflow
of SURE, because a small number of program statements will correspondingly result in a small
number of breakpoints, thus further resulting in a small number of queried variables. In such cases,
the generated PMS images will be very small, which does not affect the running of SURE but can
hinder readers’ comprehension as a running example. Therefore, here we use a complete running
example to illustrate the workflow of SURE. It is important to mention that neither the CC nor
the SD tactic can work well on this running example, that is to say, this running example can
also serve as a motivating example to reveal the shortcoming of existing failure proximities. The
reason why we don’t do this is just to maintain the simplicity of the motivating example for readers’
comprehension.

We employ Grep, a classical tool aiming to print lines in specific files that contain a match of
the given patterns. We obtain Grep (v2.4) which contains 13,274 lines from SIR [70], and randomly
mutate three positions of the original clean program to inject three faults into the program, to
obtain a 3-bug faulty version. The three mutants are shown in Listing 1.

We compile the mutated program and run the accompanying test suite, observing a series of
failures and also getting a number of passed test cases. Then, we conduct failure indexing following
the aforementioned steps: For the breakpoint determination (Section 4.1), we employ an SBFL
technique (e.g., DStar [89]) to determine the suspiciousness of program statements and setting
breakpoints. For the collection of runtime PM (Section 4.2), we run failed test cases and collect the
runtime memory information "� in accordance with Formula (2). "� comprises variables’ names,
variables’ values, and the depth of the stack frame, whose content and structure are defined as
Formulas (3)–(8), and "� ’s scale is determined by Formula (9). For the generation of PMS images
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3164 if (leftoversf)
3165 {
3166 copyset(leftovers, labels[ngrps]);
3167 copyset(intersect, labels[j]);

3168 - MALLOC(grps[ngrps].elems, position, d->nleaves);

+ MALLOC(grps[ngrps].elems, position, d->nleaves*-1);

3169 copy(&grps[j], &grps[ngrps]);
3170 ++ngrps;
3171 }

...
4681 for (ep = text + size - 11 * len;;)
4682 {
4683 while (tp <= ep)
4684 {

4685 - d = d1[U(tp[-1])], tp += d;

+ d = d1[U (! tp[-1])], tp += d;

4686 d = d1[U(tp[-1])], tp += d;
4687 if (d == 0)
4688 goto found;

...
7480 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
7481 if (compile_stack.stack == NULL)
7482 return REG_ESPACE;

7484 - compile_stack.size = INIT_COMPILE_STACK_SIZE;

+ compile_stack.size = 0;

7485 compile_stack.avail = 0;

Listing 1. Mutants in the running example.

Fig. 3. The PMS images of the failed test cases.

(Section 4.3), we first convert variables’ names and values to the numeric form using Formula (10),
and then transform each set of memory information into a PMS image.

It is hard and not necessary to completely illustrate this running example because there are too
many failed test cases. Here we randomly select seven of them, namely, C43, C178, C180, C182, C224, C252,
and C279, to show their PMS images and describe the following steps.9 Among them, C43 and C279 are
triggered by the mutant located in Line 3168, C178 and C180 are triggered by the mutant located in Line
4685, and C182, C224 as well as C252 are triggered by the mutant located in Line 7484. The seven PMS
images as well as their size, are given in Figure 3. Then, we employ the trained model (Section 4.4)
to predict the similarity between pairs of failures (Section 4.5), and get the distance information
(Section 4.6), as given in Table 3 (gray-shading cells represent other failures that are closest to a
certain failure). Finally, all failures are clustered into different groups using the two phases of the
clustering algorithm: the faults number estimation and the clustering (Section 4.7). The outcome
of the clustering algorithm is: {C43, C279}, {C178, C180}, and {C182, C224, C252}, which is consistent with

9The remaining failures omitted here can also support the conclusion of this example.
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Table 3. Distance Information between Failures

t43 t178 t180 t182 t224 t252 t279
t43 0.00 1.26 1.26 2.78 2.78 2.78 0.01
t178 1.26 0.00 0.02 3.51 3.51 3.51 1.26
t180 1.26 0.02 0.00 3.51 3.51 3.51 1.26
t182 2.78 3.51 3.51 0.00 0.01 0.02 2.78
t224 2.78 3.51 3.51 0.01 0.00 0.02 2.78
t252 2.78 3.51 3.51 0.02 0.02 0.00 2.78
t279 0.01 1.26 1.26 2.78 2.78 2.78 0.00

the characteristic of the distance information given in Table 3. Obviously, this clustering outcome
achieves promising failure indexing since the number of clusters (i.e., the number of faults, three)
is correctly estimated, and all failures are grouped correctly according to the root cause.

Moreover, we can observe that the characteristics of the PMS images in Figure 3 are highly
identical to the failure indexing result. Specifically, the PMS images of C43 and C279 are similar
and have the same size. Likewise, we can observe the same phenomenon on {C178, C180} and {C182,
C224, C252}. With the support of the PMS images, developers can be easily convinced by the failure
indexing outcome and thus adopt it.

5 Experimental Setup
5.1 ResearchQuestion

—RQ1: Does the value of the breakpoint determination threshold impact SURE’s effectiveness?

As mentioned in Section 4.1, SURE will take the Top-G% riskiest program statements as break-
points.We investigate how the value of G impacts the effectiveness of SURE. Specifically, we compare
the effectiveness of SURE when such a threshold is set from 0% to 100% with 10% increments, i.e.,
10%, 20%, 30%,…, 100%.

—RQ2: Does the selection of the feature extraction network impact SURE’s effectiveness?

For a pair of failures, SURE uses a Siamese learning-based model to predict its distance. Because
the input samples in our context are in the form of PMS images, the feature extraction network
is correspondingly CNNs. In this RQ, we investigate how the feature extraction network impacts
the effectiveness of SURE. Specifically, we compare the effectiveness of SURE when the network
configures VGG-16 [69], AlexNet [49], and ResNet-18 [30]. The three investigated networks are
all classical and commonly-used. Specifically, VGG-16 was introduced by the Visual Geometry
Group (VGG) from the University of Oxford in 2014 [69], it is part of the VGG network series
and is named “16” because it consists of 16 layers. VGG-16 is known for its simple yet effective
architecture, which allows it to learn rich and complex features from images. Also, VGG-16’s
parameter count is relatively large thus it requires more computational resources. AlexNet is a
pioneering deep CNN introduced by Krizhevsky et al. in 2012 [49], which marks a significant
breakthrough in computer vision. AlexNet popularized the use of ReLU activation functions, which
helps alleviate the vanishing gradient problem and accelerate training. ResNet-18 is a variant of
the residual neural network (ResNet) architecture. It was introduced as part of the ResNet family
by He et al. in 2015 [30], which uses residual blocks to address the vanishing gradient problem that
often occurs in deep neural networks.
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—RQ3: How does SURE perform compared with the most prevalent and advanced failure indexing
technique?

In Section 2, we have introduced that the CC-based strategy has been extensively used by the
failure indexing community due to its simplicity, and the SD-based strategy has been recognized as
the state-of-the-art solution. Thus, we compare SURE with these two types of techniques for more
convincing evaluation.

For the CC-based strategy, we select �>Eℎ8C [32, 34] as our baseline, because it is the most
common technique in the CC class. Specifically, it represents a failed test case as a binary numeric
vector with a length equal to the number of program statements, the 8th element of the vector
will be set to one (1) if the 8th statement is covered by this failed test case, and zero (0) otherwise.
Considering that there are many candidate distance metrics for handling binary vectors, we try
out some representative ones (e.g., the Euclidean distance, the Jaccard distance, and the Cosine
distance) to make sure the baseline comparison is strong. Therefore, the baseline techniques of
�>Eℎ8C include �>Eℎ8C -�D2;8 , �>Eℎ8C -� 022 , and �>Eℎ8C -�>B . Moreover, seeing that there have emerged
some works concerning the impact of the execution frequency of program statements on debugging,
we also adopt another technique in the CC class, �>E2>D=C [68, 79, 87], as our baseline. Specifically,
�>E2>D=C also represents a failed test case as a numeric vector with a length equal to the number of
program statements, while the 8th element of the vector will be set to the actual execution frequency
if the 8th statement is covered (rather than a constant, one), and zero otherwise.

For the SD-based strategy, we select "(44A as our baseline, because it is the state-of-the-art
technique not only in the SD class but also in the current field of failure indexing. Specifically, it
first runs a failed test case along with passed test cases against the faulty program, and inputs
the gathered coverage information to Crosstab [91], a risk evaluation formula designed for fault
localization, to calculate the suspiciousness of being faulty for each program statement. And then,
ranking all statements in descending order according to their suspiciousness values. Such a ranking
list will serve as the proxy for this failed test case. Besides, in our previous work, we found that
employing risk evaluation formulas designed for fault localization to represent failures could
be improper [73], and thus designed a genetic programming-based approach to automatically
generate risk evaluation formulas that are solely for failure representation. According to our
result, if Crosstab is replaced with EFF10-83 (the optimal risk evaluation formula evolved by our
genetic programming-based approach [74]), MSeer will do much better. Thus, we manually upgrade
MSeer to "(44A���10-83, which employs EFF10-83 to calculate suspiciousness, and include it as our
baseline.10

To summarize, we compare SURE with six techniques, i.e., �>Eℎ8C -�D2;8 , �>Eℎ8C -� 022 , �>Eℎ8C -�>B ,
and �>E2>D=C (the CC-based strategy), as well as "(44A and "(44A���10-83 (the SD-based strategy).

—RQ4: To what extent can SURE help human developers comprehend failure indexing results?

As a visualized failure indexing technique, SURE represents failed test cases as human-friendly
PMS images to boost the comprehension to failure indexing results. In this RQ, we quantitatively
investigate to what extent developers can comprehend and further adopt the failure indexing
result with the support of PMS images. Similar to RQ3, we compare the comprehensibility of
SURE with that of CC-based and SD-based techniques. Specifically, we conduct a comparison of
developers’ performance on comprehending failure indexing results among given PMS images
(i.e., the fingerprinting function of SURE), CC vectors (i.e., the fingerprinting function of CC-based
strategies), and suspiciousness ranking lists (i.e., the fingerprinting function of SD-based strategies).

10As a reminder, "(44A��� 10-83 is not an existing published failure indexing technique, it is manually created by us to
further evaluate the competitiveness of SURE.
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This human study involves nine tasks and 18 experienced developers from both Wuhan University
and top-tier Internet companies.

5.2 Parameter Setting
SURE needs to first determine the suspiciousness value of program statements, and thus sets
breakpoints at those highly-risky positions. In this phase, we use DStar [89], the state-of-the-art SBFL
technique that has been utilized broadly. Considering the preference for DStar in many other studies
(such as the references [8, 63, 88]), we set the value of * in DStar to 2, the most thoroughly-explored
value, in our experiments. Such a choice is not hard-coded but can be configurable, any other fault
localization techniques working at the granularity of statements can be adapted to this phase.

In the training phase, we set the value of batch size as 16. The initial value of the learning rate is
defined as 1e-4, and it will be multiplied by 0.96 after each epoch.

5.3 Dataset
For comprehensive and robust evaluation, in the experiments, we use the benchmark involving both
simulated faults and real-world faults. For simulated benchmarks, we manually seed different types
of faults into clean programs, to obtain simulated faulty programs, in light of the fact that previous
research has confirmed that mutation-based faults can provide credible results for experiments
in software testing and debugging [6, 7, 22, 43, 55, 66]. The clean programs are obtained from the
SIR [21]. For real-world benchmarks, we search for the Defects4J projects [42], one of the most
popular datasets in the current field of software testing and debugging, according to the test case
transplantation strategy proposed by An et al. [5]. All faulty programs contain one, two, three, four,
or five bugs (also referred to as 1-bug, 2-bug, 3-bug, 4-bug, and 5-bug faulty versions, respectively),
because such numbers of faults are most-widely investigated in previous studies [27, 51, 95, 110].

5.3.1 Simulated Faulty Programs. SIR is a classical repository in the community of software
testing and debugging, which has been employed in numerous pioneering studies [33, 47, 90,
106, 111]. From SIR we obtain Flex, Grep, Gzip, and Sed, four projects that have been extensively
adopted in earlier works [10, 28, 74], as the clean programs to mutate (i.e., seed faults). The concise
information about them can be found in Table 4. We utilize an open-source tool with “13” fork and
“23” star on GitHub to perform mutation, which defines 67 types of points that can be mutated,
and provides several mutation operators for each [9]. The mutation operators we leverage can be
categorized into the following two classes:

—Assignment Fault [36]: Editing the value of constants in the statement, or replacing the
operators such as addition, subtraction, multiplication, division, etc. with each other.

—Predicate Fault [100]: Reversing the 8 5 -4;B4 predicate, or deleting the 4;B4 statement, or modi-
fying the decision condition, and so on.

To create an A -bug faulty version (A = 2, 3, 4, 5), the faults from A individual 1-bug faulty versions
are injected into the same program. Such a strategy has been adopted by the majority of the
published studies in the field of multi-fault debugging [1, 24, 32, 50, 109]. In our evaluation, 2-bug,
3-bug, 4-bug, and 5-bug faulty versions each have 240. As a reminder, we also create 40 1-bug
faulty versions, because as the start point of failure indexing, 1-bug scenarios are necessary to be
included in the evaluation of failure indexing techniques. The reason for a smaller scale of 1-bug
faulty versions is that single-fault scenarios are not our focus. Specifically, (1) Failure indexing
is designed to tackle the challenge induced by the co-existence of multiple faults, it should be
evaluated on more multi-fault programs naturally (this choice has been adopted by many prior
works [51, 95, 110]); and (2) The evaluation of failure indexing techniques could be confused if there
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Table 4. Benchmarks

Language Project Version kLOC Functionality

C

Flex 2.5.3 14.5 Parser generator
Grep 2.4 13.5 Text matcher
Gzip 1.2.2 7.3 File archiver
Sed 3.02 10.2 Stream editor

Java

Chart 2.0.0 96.3 Chart library
Closure 2.0.0 90.2 Closure compiler
Lang 2.0.0 22.1 Apache commons-lang
Math 2.0.0 85.5 Apache commons-math
Time 2.0.0 28.4 Date and time library

are too many 1-bug faulty versions, because the capability of 1-bug faulty versions to measure
failure indexing techniques’ effectiveness is a little bit limited. In a 1-bug faulty version, all failures
are linked to the same fault and thus they should be clustered into one group, such simple cases will
affect the whole evaluation, and further reduce the capability of evaluation results to essentially
reveal failure indexing techniques’ effectiveness. To summarize, we obtain 1,000 SIR faulty versions
containing 1 ∼ 5 faults.

5.3.2 Real-World Faulty Programs. Defects4J is one of the most popular benchmarks in the
current field of software testing and debugging, due to its realism and ease of use [42]. Defects4J is
typically for single-fault scenarios, namely, no matter how many bugs are contained in a faulty
program, the provided test suite is only sufficient to reveal one of them. Such a characteristic hinders
its use in failure indexing studies. To adapt Defects4J to multi-fault scenarios, An et al. presented
a test case transplantation strategy [5]. Specifically, the majority of Defects4J faulty versions are
indexed chronologically according to the revision date, a lower ID indicates a more recent version.
Therefore, the fault in a newer version is also likely to be contained in an older version. For example,
the fault of the faulty version Math-5b is found to exist in the faulty version Math-6b as well, it is
not revealed in Math-6b simply due to the absence of the fault-revealing test case. If this test case
is transplanted to Math-6b, the enhanced test suite is able to reveal both of the two faults, thus
a 2-bug faulty version can be obtained [5]. Following this strategy, we search for a collection of
multi-fault Defects4J programs, from Chart, Closure, Lang, Math, and Time, as shown in Table 4.
Because Defects4J multi-fault versions are obtained by searching in real-life environments, their
number is not very large. In total, we obtain 100 Defects4J faulty versions containing 1 ∼ 5 faults.
As a reminder, because the way of combining multiple single-faults in Defects4J differs from that
in SIR, and faults provided in Defects4J are from the real world, the numbers of generated 1-bug,
2-bug, 3-bug, 4-bug, and 5-bug Defects4J faulty versions are unbalanced. Thus, the experimental
results of Defects4J will be presented as a whole.

5.4 Metric
The mission of a failure indexing technique is to identify the mutual relationship among failures by
clustering, i.e., determine which failures are triggered by the same (or different) fault(s). Correspond-
ingly, the outcome of failure indexing is one or more clusters of failed test cases. For evaluation,
we need to quantitatively measure to which extent the delivered one or more clusters correctly
reflect the true relationship among failures. There are two typical types of metrics in evaluating
clustering outcomes, namely, external metrics [93] and internal metrics [76]. The former compares
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Table 5. Four Scenarios in the Pair of Test Cases-Based Metrics

Notation Results of failure indexing
In the generated cluster In the oracle cluster

SS Same Same
SD Same Different
DS Different Same
DD Different Different

clustering results with the oracle (true linkages between failures and faults), while the latter ex-
amines inherent properties of the delivered clusters, such as compactness and separation, and so
on, typically when the oracle is inaccessible. In our controlled experiments, the oracle clusters
can be obtained easily in advance. Specifically, for an A -bug SIR faulty version, it is generated by
combining A individual single-bug faulty versions. We can run the test suite against these A faulty
versions separately, thus becoming aware of the culprit fault of each failure. And for an A -bug
Defects4J faulty version, it is generated by transplanting the failed test cases triggered by a fault to
the faulty version that contains another fault. This transplantation process itself explicitly indicates
the relationship between failures and underlying faults. Thus, we use external metrics to measure
the effectiveness of failure indexing techniques. Concretely speaking, we employ four external
metrics, the Fowlkes and Mallows Index (FMI), the Jaccard Coefficient (JC), the Precision
Rate (PR), and the Recall Rate (RR), in our experiments, because they are all classical metrics for
clustering and have been adopted by many published studies [93, 96, 113]. Among them, FMI and
JC are pair of test cases-based, while PR and RR are single test case-based.

5.4.1 Clustering Effectiveness—Pair of Test Cases-Based Metrics. The pair of test cases-based
metric refers to comparing the indexing consistency of each pair of failed test cases in the generated
cluster with the oracle cluster. Four possible scenarios in the comparison are given in Table 5.
Specifically, supposing that there are = failed test cases that need to be clustered, they can form
�2
= pairs by combining any two ones. For a pair, if its two member failures are determined to be

triggered by the (0<4 fault in the generated cluster, and these two are also divided into the (0<4

group in the oracle cluster, this pair falls into the category of “((” (Same, Same). Similarly, a pair is
also possible to fall into the categories of “(�” (Same, Different), “�(” (Different, Same) or “��”
(Different, Different). We use -(( , -(� , -�( , and -�� to denote the numbers of the pairs fallen into
“(( ,” “(� ,” “�( ,” and “�� ,” respectively. Obviously, the sum of -(( , -(� , -�( , and -�� will be �2

= ,
because any pair of failures will belong to one of the four scenarios. FMI and JC can integrate these
four notations into one metric, to comprehensively reflect the similarity between the generated
cluster and the oracle cluster, as shown in Formulas (13)–(14), respectively.

�"� =

√
-((

-(( + -(�

× -((

-(( + -�(

, (13)

�� =
-((

-(( + -(� + -�(

. (14)

It can be proved that the intervals of FMI and JC are both [0, 1], and that the larger the value in
this range, the more effective clustering is.

5.4.2 Clustering Effectiveness—Single Test Case-Based Metrics. The single test case-based metric
refers to comparing the classification result of each failed test case in the generated cluster with
the oracle cluster. Four possible scenarios in the comparison are given in Table 6. Specifically, for a
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Table 6. Four Scenarios in the Single Test Case-Based Metrics

Notation Results of failure indexing
In the generated cluster In the oracle cluster

TP Positive Positive
FP Positive Negative
TN Negative Negative
FN Negative Positive

failed test case, if it is predicted to be triggered by a fault in the generated cluster (i.e., %>B8C8E4),
and its root cause is indeed this fault (i.e.,)AD4 prediction result), this failure falls into the category
of “)%” (True Positive). Likewise, if a failed test case is predicted not to be triggered by a fault in the
generated cluster (i.e., #460C8E4), while its root cause is actually this fault (i.e., �0;B4 prediction
result), this failure falls into the category of “�# ” (False Negative). Similarly, a failed test case is also
possible to fall into the categories of “�%” (False Positive) and “)# ” (True Negative). We use -)% ,
-�# , -�% , and -)# to denote the numbers of the failed test cases fallen into “)% ,” “�# ,” “�% ,” and
“)# ,” respectively. Obviously, the sum of -)% , -�# , -�% , and -)# will be the number of failures,
because any failure will belong to one of the four scenarios. PR and RR can integrate these four
notations into one metric, to comprehensively reflect the similarity between the generated cluster
and the oracle cluster, as shown in Formulas (15) and (16), respectively.

%' =
-)%

-)% + -�%

, (15)

'' =
-)%

-)% + -�#

. (16)

It can be proved that the intervals of PR and RR are both [0, 1], and that the larger the value in
this range, the more effective clustering is.

Notice that FMI, JC, PR, and RR evaluate the effectiveness of clustering of one faulty version. In
our experiments, there are a series of faulty versions to make our evaluation abundant. Thus, for a
failure indexing technique ) , we determine its effectiveness by adapting the FMI, JC, PR, and RR
metrics on one faulty version to that on multiple faulty versions:

(_")
" =

+)
4@D0;∑
8

"8 , (17)

where “(_"” is the abbreviation for “(D<_"4CA82B .” +)
4@D0;

is the number of faulty versions whose
number of faults is correctly predicted by using ) . "8 is the metric value " (" takes FMI, JC,
PR, or RR) on the 8th “: == A” faulty version11. As a reminder, an A -bug faulty version contains A
faults, which is hard to know in advance. A failure indexing technique should first correctly predict
the number of faults A , and then cluster all failures into A groups. For an A -bug faulty version, if
the predicted number of faults : is not equal to A , we do not evaluate the clustering effectiveness
on this faulty version, because prior studies have pointed out that the performance of a failure
indexing technique can be mainly determined by those “: == A” faulty versions [27, 73], that is,
the contribution of “: != A” ones is marginal. And also, it is indeed difficult to compare : delivered
clusters with A oracle clusters. Notice that “: == A” is just an ideal scenario (not necessary) for
SURE. Even if : != A , SURE can also work (We will further explain this point in Section 8).
11For an A -bug faulty version, if the predicted number of faults : is equal to A , we label this faulty version as “: == A ”.
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5.4.3 Average Precision (AP). Apart from evaluating the clustering effectiveness of failure
indexing techniques on those “: == A” faulty versions, we also intend to deeply assess the effec-
tiveness of PMS images in measuring the proximity of failures independently of the clustering
algorithm (i.e., on both “: == A” and “: != A” faulty versions). More concretely, we wonder when
failures are represented as PMS images, whether failure pairs originating from the same root cause
exhibit higher similarity compared to pairs from different root causes. Thus, we utilize another
metric, AP, which does not rely on a precise prediction of the number of faults but focuses on the
similarity between failure pairs. AP is the weighted mean of precision values at each threshold
where the weight value is set to the increase in recall from the previous threshold, as defined in
Formula (18):

�% =
∑
=

('= − '=−1) %=, (18)

where %= and '= are the precision and recall values at the =th threshold, respectively. The baseline
for AP is the proportion of positive samples.

In summary, there are six evaluation metrics used in the experiments. Among them, the first five
metrics correspond to the two goals of failure indexing mentioned previously: +)

4@D0;
reflects the

goal of correct faults number estimation, and (_")
�"�

, (_")
��

, (_")
%'

, and (_")
''

reflect the goal of
promising clustering. The last one metric �% provides an evaluation that is less dependent on the
accuracy of fault number estimation.

5.5 Environment
We collect program coverage and runtime memory information on Ubuntu 16.04.1 LTS with GCC
5.4.0 and JDB 1.8. The Siamese neural network model is trained and deployed on 4 GPUs of GeForce
RTX 2080 Ti. The clustering process runs on a server equipped with 96 Intel Xeon(R) Gold 5218
CPU cores with 2.30GHz and 160 GB of memory.

6 Result and Analysis
6.1 RQ1: The Value of the Breakpoint Determination Threshold
As the first step, SURE needs to determine the Top-G% riskiest program statements as breakpoints.
In this RQ, we investigate the effectiveness of SURE when the breakpoint determination threshold
is set from 0% to 100% with 10% increments. Notice that in the training and deployment phases
of SURE, feature extraction networks are necessary. Though RQ2 will investigate the selection of
such networks, we must adopt a feature extraction network in this RQ to make the model run. To
avoid bias, we will investigate this research question based on three feature extraction networks,
i.e., VGG-16, AlexNet, and ResNet-18, separately. The results are given in Table 7 (in simulated
environments) and Table 8 (in real-world environments). In these two tables, each bold cell denotes
the value of a specific metric when using a variant of SURE, and each non-bold cell denotes the
value of the variance (+0A ) or standard deviation ((.�.).

6.1.1 In Simulated Environments. Let us first focus on the impact of the breakpoint determination
threshold on the effectiveness of SURE, based on VGG-16 (i.e., the row “VGG-16” of Table 7). For
example, the cell (“VGG-16,” “10%,” +)

4@D0;
) is 161, indicating that when SURE takes the Top-10%

riskiest statements as breakpoints and adopts VGG-16 as the feature extraction network (SURE in
such a configuration can be referred to as (*'�10%

+��-16, similarly below), it can correctly predict the
number of faults on 161 faulty versions. Similarly, when) takes (*'�10%

+��-16, the values of (_")
�"�

,
(_")

��
, (_")

%'
, and (_")

''
, are 126.78, 106.39, 120.24, and 80.67, respectively. We can find that

when we use VGG-16 as the feature extraction network, it does not matter much if the breakpoint
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Table 7. Performance of SURE on SIR

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
\Z
equal

161 147 122 143 153 164 142 145 151 155
Y_SZ

LSO 126.78 114.32 96.11 114.36 121.28 131.10 112.59 112.26 118.91 122.75
-+0A 7.22e-03 6.99e-03 6.06e-03 6.98e-03 7.08e-03 5.67e-03 5.58e-03 4.72e-03 6.60e-03 5.59e-03
-(.�. 8.49e-02 8.36e-02 7.78e-02 8.35e-02 8.41e-02 7.53e-02 7.47e-02 6.87e-02 8.12e-02 7.48e-02

Y_SZ
P I 106.39 94.79 80.36 96.97 102.25 111.44 94.95 93.18 99.82 103.33

-+0A 1.55e-02 1.39e-02 1.23e-02 1.49e-02 1.49e-02 1.22e-02 1.15e-02 9.73e-03 1.33e-02 1.15e-02
-(.�. 1.24e-01 1.18e-01 1.11e-01 1.22e-01 1.22e-01 1.11e-01 1.07e-01 9.86e-02 1.15e-01 1.07e-01

Y_SZ
VX 120.24 106.67 91.60 111.40 115.48 127.75 108.06 110.88 119.31 123.99
-+0A 2.36e-02 2.37e-02 2.82e-02 2.65e-02 2.75e-02 2.46e-02 2.00e-02 1.62e-02 2.31e-02 1.65e-02
-(.�. 1.54e-01 1.54e-01 1.68e-01 1.63e-01 1.66e-01 1.57e-01 1.41e-01 1.27e-01 1.52e-01 1.29e-01

VGG-16

Y_SZ
XX 80.67 71.20 59.52 72.80 75.92 84.55 69.20 63.20 72.66 73.17
-+0A 2.32e-02 1.51e-02 2.22e-02 1.94e-02 2.46e-02 2.59e-02 2.49e-02 1.75e-02 2.02e-02 1.99e-02
-(.�. 1.52e-01 1.23e-01 1.49e-01 1.39e-01 1.57e-01 1.61e-01 1.58e-01 1.32e-01 1.42e-01 1.41e-01

\Z
equal

167 143 139 169 187 160 160 176 163 150
Y_SZ

LSO 131.15 113.31 109.04 135.30 148.08 125.76 126.53 137.60 127.59 118.99
-+0A 7.57e-03 7.53e-03 6.87e-03 8.38e-03 6.02e-03 6.79e-03 6.27e-03 5.23e-03 7.03e-03 6.04e-03
-(.�. 8.70e-02 8.68e-02 8.29e-02 9.15e-02 7.76e-02 8.24e-02 7.92e-02 7.23e-02 8.38e-02 7.77e-02

Y_SZ
P I 109.70 95.43 91.11 115.11 124.54 105.42 106.46 115.04 106.70 100.56

-+0A 1.59e-02 1.58e-02 1.38e-02 1.75e-02 1.23e-02 1.45e-02 1.28e-02 1.03e-02 1.41e-02 1.28e-02
-(.�. 1.26e-01 1.26e-01 1.17e-01 1.32e-01 1.11e-01 1.20e-01 1.13e-01 1.01e-01 1.19e-01 1.13e-01

Y_SZ
VX 123.10 109.06 102.31 131.53 145.66 124.69 127.87 136.72 127.40 120.04
-+0A 2.35e-02 2.25e-02 3.02e-02 2.12e-02 1.78e-02 2.04e-02 2.21e-02 1.94e-02 2.23e-02 1.96e-02
-(.�. 1.53e-01 1.50e-01 1.74e-01 1.46e-01 1.33e-01 1.43e-01 1.49e-01 1.39e-01 1.49e-01 1.40e-01

AlexNet

Y_SZ
XX 80.44 70.11 69.80 86.33 89.91 76.78 80.89 82.49 79.07 74.08
-+0A 2.35e-02 2.56e-02 1.93e-02 2.53e-02 2.12e-02 2.45e-02 2.31e-02 1.88e-02 2.47e-02 2.59e-02
-(.�. 1.53e-01 1.60e-01 1.39e-01 1.59e-01 1.46e-01 1.56e-01 1.52e-01 1.37e-01 1.57e-01 1.61e-01

\Z
equal

118 153 151 157 150 161 157 147 172 137
Y_SZ

LSO 92.71 121.25 119.68 125.56 115.85 126.42 122.81 115.38 136.39 109.13
-+0A 7.28e-03 7.82e-03 7.51e-03 6.78e-03 5.11e-03 5.22e-03 5.18e-03 5.63e-03 5.53e-03 5.92e-03
-(.�. 8.53e-02 8.84e-02 8.66e-02 8.24e-02 7.15e-02 7.23e-02 7.20e-02 7.50e-02 7.43e-02 7.69e-02

Y_SZ
P I 77.48 102.14 100.77 106.47 95.82 106.07 102.51 96.42 114.98 92.45

-+0A 1.56e-02 1.65e-02 1.55e-02 1.46e-02 1.02e-02 1.12e-02 1.05e-02 1.16e-02 1.14e-02 1.30e-02
-(.�. 1.25e-01 1.29e-01 1.24e-01 1.21e-01 1.01e-01 1.06e-01 1.02e-01 1.08e-01 1.07e-01 1.14e-01

Y_SZ
VX 82.63 115.51 115.36 122.86 114.62 121.60 121.79 116.69 135.98 109.16
-+0A 3.00e-02 2.99e-02 2.73e-02 2.37e-02 1.67e-02 2.31e-02 1.74e-02 1.70e-02 2.30e-02 2.31e-02
-(.�. 1.73e-01 1.73e-01 1.65e-01 1.54e-01 1.29e-01 1.52e-01 1.32e-01 1.30e-01 1.52e-01 1.52e-01

ResNet-18

Y_S)
''

59.37 79.27 76.55 78.96 68.59 77.27 73.57 68.52 84.51 67.48
-+0A 1.89e-02 2.38e-02 1.97e-02 2.71e-02 1.68e-02 2.11e-02 1.95e-02 2.08e-02 1.97e-02 2.37e-02
-(.�. 1.38e-01 1.54e-01 1.40e-01 1.65e-01 1.30e-01 1.45e-01 1.40e-01 1.44e-01 1.40e-01 1.54e-01

determination threshold takes 10%, 20%,…, or 100%, because all the five metrics seem to be stable
regardless of how many breakpoints are set. We illustrate this trend (i.e., the row “VGG-16” of
Table 7) in Figure 4(a). Besides, we can find that no matter from the perspective of FMI, JC, PR, or
RR, the stability of clustering effectiveness (measured by the variance and the standard deviation)
does not change significantly as the increase of values of the breakpoint determination threshold.
For example, the cell (“VGG-16,” “10%,” (_")

�"�
-+0A ) is 7.22e-03, revealing that among 161 “: == A”

faulty versions obtained by using (*'�10%
+��-16, the variance of the values of FMI is 7.22e-03, and

this value changes little as the value of the breakpoint determination threshold increasing. This
confirms that it does not matter much if the breakpoint determination threshold takes 10%, 20%,…,
or 100%.
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Table 8. Performance of SURE on Defects4J

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
\Z
equal

35 37 31 30 31 37 36 28 32 31
Y_SZ

LSO 34.91 36.84 30.95 29.90 30.91 36.85 35.86 27.86 31.85 30.94
-+0A 3.62e-05 9.48e-05 2.00e-05 8.89e-05 4.64e-05 8.36e-05 6.82e-05 1.25e-04 9.37e-05 5.43e-05
-(.�. 6.02e-03 9.74e-03 4.47e-03 9.43e-03 6.81e-03 9.14e-03 8.26e-03 1.12e-02 9.68e-03 7.37e-03

Y_SZ
P I 34.83 36.69 30.90 29.81 30.84 36.72 35.73 27.74 31.73 30.88
-+0A 1.45e-04 3.76e-04 7.99e-05 3.10e-04 1.48e-04 2.72e-04 2.47e-04 4.64e-04 3.26e-04 1.85e-04
-(.�. 1.20e-02 1.94e-02 8.94e-03 1.76e-02 1.21e-02 1.65e-02 1.57e-02 2.15e-02 1.80e-02 1.36e-02

Y_SZ
VX 33.03 34.70 30.00 28.72 29.52 35.02 33.68 25.99 29.81 30.04
-+0A 1.51e-02 1.32e-02 7.44e-03 1.25e-02 1.02e-02 1.09e-02 1.73e-02 1.79e-02 1.65e-02 9.46e-03
-(.�. 1.23e-01 1.15e-01 8.62e-02 1.12e-01 1.01e-01 1.04e-01 1.32e-01 1.34e-01 1.28e-01 9.73e-02

VGG-16

Y_SZ
XX 33.05 34.41 29.92 28.58 29.37 34.67 33.51 25.85 29.48 29.95
-+0A 1.48e-02 1.76e-02 8.35e-03 1.57e-02 1.31e-02 1.50e-02 1.87e-02 2.08e-02 2.17e-02 1.12e-02
-(.�. 1.21e-01 1.33e-01 9.14e-02 1.25e-01 1.14e-01 1.22e-01 1.37e-01 1.44e-01 1.47e-01 1.06e-01

\Z
equal

41 40 32 34 31 38 34 32 33 32
Y_SZ

LSO 40.81 39.90 31.92 33.96 30.87 37.80 33.90 31.97 32.91 31.89
-+0A 8.34e-05 2.38e-05 3.13e-05 1.63e-05 7.60e-05 1.09e-04 8.55e-05 8.50e-06 2.59e-05 6.63e-05
-(.�. 9.13e-03 4.87e-03 5.59e-03 4.03e-03 8.72e-03 1.04e-02 9.24e-03 2.91e-03 5.09e-03 8.14e-03

Y_SZ
P I 40.63 39.80 31.83 33.92 30.75 37.63 33.82 31.94 32.84 31.79
-+0A 3.36e-04 1.00e-04 1.37e-04 6.51e-05 2.74e-04 3.97e-04 2.84e-04 3.40e-05 9.77e-05 2.23e-04
-(.�. 1.83e-02 1.00e-02 1.17e-02 8.07e-03 1.65e-02 1.99e-02 1.68e-02 5.83e-03 9.88e-03 1.49e-02

Y_SZ
VX 37.64 37.66 30.35 33.25 28.83 34.83 32.77 31.25 30.91 30.21
-+0A 2.13e-02 1.40e-02 1.32e-02 5.40e-03 1.88e-02 2.00e-02 7.88e-03 5.31e-03 1.52e-02 1.12e-02
-(.�. 1.46e-01 1.18e-01 1.15e-01 7.35e-02 1.37e-01 1.41e-01 8.88e-02 7.29e-02 1.23e-01 1.06e-01

AlexNet

Y_SZ
XX 37.44 37.58 30.35 33.17 28.58 34.58 32.61 31.25 31.01 30.10
-+0A 2.50e-02 1.46e-02 1.32e-02 6.28e-03 2.32e-02 2.49e-02 1.42e-02 5.31e-03 1.48e-02 1.36e-02
-(.�. 1.58e-01 1.21e-01 1.15e-01 7.93e-02 1.52e-01 1.58e-01 1.19e-01 7.29e-02 1.22e-01 1.17e-01

\Z
equal

37 31 33 36 34 33 33 29 33 33
Y_SZ

LSO 36.85 30.90 32.91 35.92 33.88 32.89 32.92 28.88 32.90 32.93
-+0A 5.65e-05 6.70e-05 2.59e-05 1.73e-05 8.75e-05 4.65e-05 4.26e-05 7.25e-05 6.35e-05 5.31e-05
-(.�. 7.52e-03 8.19e-03 5.09e-03 4.16e-03 9.36e-03 6.82e-03 6.53e-03 8.52e-03 7.97e-03 7.29e-03

Y_SZ
P I 36.71 30.82 32.83 35.84 33.78 32.81 32.85 28.79 32.80 32.88
-+0A 2.22e-04 2.18e-04 1.04e-04 7.47e-05 2.93e-04 1.46e-04 1.64e-04 2.20e-04 2.24e-04 1.63e-04
-(.�. 1.49e-02 1.48e-02 1.02e-02 8.64e-03 1.71e-02 1.21e-02 1.28e-02 1.48e-02 1.50e-02 1.27e-02

Y_SZ
VX 34.36 29.41 31.07 34.04 32.03 30.83 31.75 27.04 31.16 32.04
-+0A 1.53e-02 1.25e-02 1.25e-02 1.18e-02 1.45e-02 1.59e-02 8.42e-03 1.65e-02 1.61e-02 6.37e-03
-(.�. 1.24e-01 1.12e-01 1.12e-01 1.09e-01 1.21e-01 1.26e-01 9.18e-02 1.29e-01 1.27e-01 7.98e-02

ResNet-18

Y_SZ
XX 34.20 29.44 30.93 34.01 31.92 30.80 31.51 26.98 31.08 31.93
-+0A 1.71e-02 1.11e-02 1.35e-02 1.17e-02 1.76e-02 1.67e-02 1.32e-02 1.75e-02 1.68e-02 8.46e-03
-(.�. 1.31e-01 1.05e-01 1.16e-01 1.08e-01 1.33e-01 1.29e-01 1.15e-01 1.32e-01 1.30e-01 9.20e-02

A similar trend can be found when AlexNet and ResNet-18 serve as the feature extraction
network. Specifically, if we adopt AlexNet or ResNet-18 as the feature extraction network (i.e., the
row “AlexNet” or the row “ResNet-18” of Table 7), there is no explicit trend toward change in the
five metrics with the increase of G either, as shown in Figure 4(b) and (c), respectively. Besides,
the values of the variance and standard deviation are relatively stable as well when AlexNet and
ResNet-18 serve as the feature extraction network.

6.1.2 In Real-World Environments. Likewise, let us first use VGG-16 as the feature extraction
network, to investigate the impact of the breakpoint determination threshold on the effectiveness
of SURE. The results are reported in the row “VGG-16” of Table 8. Similar to the trend observed in
simulated environments, we can find that the effectiveness of SURE is likely to be stable, regardless
of how many breakpoints are set according to the suspiciousness of program statements. For
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Fig. 4. The impact of the breakpoint determination threshold on SURE on SIR.

Fig. 5. The impact of the breakpoint determination threshold on SURE on Defects4J.

example, when the threshold is set from 10% to 100% with 10% increments, the value of +)
4@D0;

is 35,
37, 31, 30, 31, 37, 36, 28, 32, and 31. And the values of (_")

�"�
, (_")

��
, (_")

%'
, and (_")

''
seem to

be not largely influenced by the breakpoint determination threshold either. We depict this trend
in Figure 5(a). When the feature extraction model is replaced with AlexNet and ResNet-18, this
conclusion can still be maintained, as shown in the row “AlexNet” and the row “ResNet-18” of
Table 8, as well as Figure 5(b) and (c), respectively. Besides, the values of the variance and standard
deviation do not change significantly as the increase of values of the breakpoint determination
threshold, no matter from the perspective of FMI, JC, PR, or RR.

The result of RQ1 can be explained to mean that the memory information collected at the Top-10%
riskiest statements is already sufficient to represent failures. This result confirms our intuition
of the breakpoint determination phase (Section 4.1), i.e., statements with higher risk values are
more likely to be faulty, and runtime memory information gathered at these positions could have a
stronger capability to reveal faults, and thus can contribute more to representing failures. Moreover,
the result of RQ1 also reveals the necessity of the breakpoint determination component of SURE.
Specifically, more memory information cannot contribute more to failure representation, thus we
can first use SBFL to determine a few breakpoints, and then collect memory information within a
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Fig. 6. The impact of the feature extraction network on SURE.

small range. This is practically important because the overhead of running SBFL is less than that of
collecting runtime memory information. To put it another way, we preliminarily use a lower-cost
technique to avoid the following procedure with relatively higher costs, while such a procedure
could not bring gains for our approach. Therefore, in the following RQs, the investigation will be
based on the breakpoint determination threshold of Top-10%.

6.2 RQ2: The Adopted Feature Extraction Network
In addition to the breakpoint determination threshold, another configurable hyperparameter of
SURE is the feature extraction network. In this RQ, we select three deep CNNs, VGG-16, AlexNet,
and ResNet-18, to investigate how the effectiveness of SURE will be influenced when adopting
different networks.

6.2.1 In Simulated Environments. We first analyze the results in simulated environments, as
shown in the column “10%” of Table 7. We can find that there are 167 “: == A” faulty versions
when using AlexNet as the feature extraction network, while 161 and 118 ones when using VGG-
16 and ResNet-18, respectively. As for the metrics (_")

�"�
, (_")

��
, (_")

%'
, and (_")

''
, AlexNet

also dominates VGG-16 and ResNet-18 (with only one exception where (_"(*'�10%
+��-16

''
: 80.67 is

slightly higher than (_"(*'�10%
�;4G#4C

''
: 80.44). We illustrate these results in Figure 6(a) as well for clear

understanding. We can find that in simulated environments, AlexNet can better extract features for
PMS images thus deliver more promising failure indexing outcomes.

6.2.2 In Real-World Environments. Now we navigate to real-world environments, the results
are given in the column “10%” of Table 8. We can find that there are 41 “: == A” faulty versions
when using AlexNet as the feature extraction network, while 35 and 37 ones when using VGG-
16 and ResNet-18, respectively. As for the metrics (_")

�"�
, (_")

��
, (_")

%'
, and (_")

''
, AlexNet

also dominates VGG-16 and ResNet-18. We illustrate these results in Figure 6(b) as well for clear
understanding. Similar to the conclusion in simulated environments, we can find that AlexNet is
more suitable for extracting features for PMS images.

A possible explanation for the promise of AlexNet in our experiments could be its relatively
shallow architecture. Concretely speaking, PMS images are typically in a simple form (not too many
complex features involved in PMS images), it can be naturally conjectured that a shallow CNN
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might be enough to extract their features. Among the selected three networks, AlexNet consists of
eight layers including five convolutional ones, while VGG-16 and ResNet-18 both have much deeper
architectures than AlexNet. Thus, it is intuitive that SURE could perform better when configuring
AlexNet as the feature extraction network. Therefore, in the following RQs, the investigation will be
based on the feature extraction network of AlexNet.

6.3 RQ3: The Competitiveness of SURE
In this RQ, we investigate to which extent SURE exceeds the existing most prevalent and advanced
failure indexing techniques. Given the conclusions of RQ1 and RQ2, we configure 10% as the
breakpoint determination threshold and AlexNet as the feature extraction network for SURE in
this RQ. To put it another way, we will use (*'�10%

�;4G#4C
to compare with baseline techniques (for

convenience, we use the term “(*'�” to denote “(*'�10%
�;4G#4C

” hereafter).

6.3.1 Clustering Effectiveness in Simulated Environments. The results in simulated environments
from a global perspective are given in the row “Total” of Table 9 and Figure 7(a). It can be observed
that (*'� outperforms all the baseline techniques. Specifically, regarding the capability of faults
number estimation, (*'� can correctly predict the number of faults on 167 faulty versions on
SIR, with 518.52%, 421.88%, 421.88%, 209.26%, 101.20%, and 25.56% improvements compared with
�>Eℎ8C -�>B (27), �>Eℎ8C -� 022 (32), �>Eℎ8C -�D2;8 (32), �>E2>D=C (54), "(44A (83), and "(44A���10-83 (133),
respectively. (*'� consistently exceeds the baselines on all four clustering metrics. For instance, if
we focus on the comparison between (*'� and �>Eℎ8C -�D2;8 , improvements are 418.17%, 414.06%,
431.06%, and 439.14%, regarding (_")

�"�
, (_")

��
, (_")

%'
, and (_")

''
, respectively. Considering the

four clustering metrics globally, the average improvement of (*'� over �>Eℎ8C -�D2;8 is 425.61%.
Similarly, in the contexts of comparing (*'� with �>Eℎ8C -�>B , �>Eℎ8C -� 022 , �>E2>D=C , "(44A , and
"(44A���10-83, the average improvements can be calculated as 549.28%, 445.55%, 187.18%, 105.20%,
and 19.27%, respectively. Besides, as mentioned in Section 5.3, all SIR faulty versions can be divided
into 1-bug, 2-bug, 3-bug, 4-bug, and 5-bug ones. Here we also give the experimental results of these
five sub-environments, as shown in the rows “1-bug” ∼ “5-bug” of Table 9, respectively. It can be
observed that in each sub-part, SURE can outperform baseline techniques as well.

6.3.2 Clustering Effectiveness in Real-World Environments. The results in real-world environments
are given in Table 10 and Figure 7(b). It can be observed that (*'� outperforms all the baseline
techniques. Specifically, regarding the capability of faults number estimation, (*'� can correctly
predict the number of faults on 41 faulty versions on Defects4J, with 156.25%, 115.79%, 105.00%,
70.83%, 41.38%, and 24.24% improvements compared with�>Eℎ8C -�>B (16),�>Eℎ8C -� 022 (19),�>Eℎ8C -�D2;8
(20), �>E2>D=C (24), "(44A (29), and "(44A���10-83 (33), respectively. (*'� consistently exceeds the
baselines on all four clustering metrics. For instance, if we focus on the comparison between (*'�

and�>Eℎ8C -�D2;8 , improvements are 104.05%, 103.15%, 88.20%, and 87.20%, regarding (_")
�"�

, (_")
��

,
(_")

%'
, and (_")

''
, respectively. Considering the four clustering metrics globally, the average

improvement of (*'� over �>Eℎ8C -�D2;8 is 95.65%. Similarly, in the contexts of comparing (*'�

with �>Eℎ8C -�>B , �>Eℎ8C -� 022 , �>E�>D=C , "(44A , and "(44A���10-83, the average improvements can
be calculated as 152.70%, 108.79%, 64.81%, 35.53%, and 20.21%, respectively. Notice that the faults
provided in Defects4J are from the real world, the way of combining multiple single-faults in
Defects4J differs from that in SIR. Therefore, the numbers of generated 1-bug, 2-bug, 3-bug, 4-bug,
and 5-bug Defects4J faulty versions are relatively small, thus the experimental results of Defects4J
are presented as a whole.

6.3.3 AP. The evaluation results of the AP are given in Table 11, in which the baseline value is
the proportion of positive samples. It can be observed that in SIR, SURE obtains an AP value of 0.79,
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Table 9. Clustering Effectiveness of SURE in Simulated Environments

# Faults T \Z
equal

Y_SZ
LSO Y_SZ

P I Y_SZ
VX Y_SZ

XX

1-bug

�>Eℎ8C -�>B 0 0.00 0.00 0.00 0.00
�>Eℎ8C -� 022 0 0.00 0.00 0.00 0.00
�>Eℎ8C -�D2;8 1 1.00 1.00 1.00 1.00
�>E2>D=C 3 3.00 3.00 3.00 3.00
"(44A 4 4.00 4.00 4.00 4.00
"(44A���10-83 7 7.00 7.00 7.00 7.00
Y[XK 9 9.00 9.00 9.00 9.00

2-bug

�>Eℎ8C -�>B 11 8.33 8.01 8.07 4.45
�>Eℎ8C -� 022 13 9.84 8.32 8.74 5.38
�>Eℎ8C -�D2;8 13 9.92 8.38 9.21 5.53
�>E2>D=C 20 16.23 13.77 15.98 10.87
"(44A 29 23.02 16.86 23.43 12.86
"(44A���10-83 41 31.97 24.38 33.76 22.01
Y[XK 51 43.26 32.08 38.99 22.35

3-bug

�>Eℎ8C -�>B 10 7.46 7.17 7.17 4.36
�>Eℎ8C -� 022 11 8.76 7.16 7.83 4.57
�>Eℎ8C -�D2;8 9 7.07 6.12 6.54 3.69
�>E2>D=C 14 11.09 8.79 10.89 8.13
"(44A 23 16.16 13.05 16.37 10.17
"(44A���10-83 34 24.62 20.36 26.57 19.61
Y[XK 42 30.15 25.33 30.55 19.79

4-bug

�>Eℎ8C -�>B 4 2.66 2.29 2.32 1.75
�>Eℎ8C -� 022 4 3.11 2.67 2.86 1.92
�>Eℎ8C -�D2;8 5 3.92 3.27 3.53 2.42
�>E2>D=C 9 7.52 6.03 7.43 5.07
"(44A 15 11.14 9.97 11.21 7.02
"(44A���10-83 24 19.85 16.03 19.94 13.94
Y[XK 30 24.18 21.24 24.09 16.31

5-bug

�>Eℎ8C -�>B 2 1.31 1.30 1.34 0.97
�>Eℎ8C -� 022 4 3.26 2.87 3.09 1.80
�>Eℎ8C -�D2;8 4 3.40 2.57 2.90 2.28
�>E2>D=C 8 5.49 5.16 5.07 4.23
"(44A 12 8.54 7.84 8.07 5.21
"(44A���10-83 27 20.94 19.21 18.25 11.48
Y[XK 35 24.56 22.05 20.47 12.99

Total

�>Eℎ8C -�>B 27 19.76 18.77 18.90 11.53
�>Eℎ8C -� 022 32 24.97 21.02 22.52 13.67
�>Eℎ8C -�D2;8 32 25.31 21.34 23.18 14.92
�>E2>D=C 54 43.33 36.75 42.37 31.30
"(44A 83 62.86 51.72 63.08 39.26
"(44A���10-83 133 104.38 86.98 105.52 74.04
Y[XK 167 131.15 109.70 123.10 80.44

higher than both the baseline value (0.27) and the other compared techniques (from 0.26 to 0.63).
Similarly, in Defects4J, SURE obtains an AP value of 0.85, consistently exceeds the baseline value
(0.22) and outperforms the other compared techniques (from 0.27 to 0.68). These results reveal that
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Fig. 7. Clustering effectiveness of SURE.

Table 10. Clustering Effectiveness of SURE in Real-World Environments

T \Z
equal

Y_SZ
LSO Y_SZ

P I Y_SZ
VX Y_SZ

XX

�>Eℎ8C -�>B 16 15.97 15.50 15.30 15.15
�>Eℎ8C -� 022 19 19.00 18.75 18.61 18.59
�>Eℎ8C -�D2;8 20 20.00 20.00 20.00 20.00
�>E2>D=C 24 23.98 23.96 23.50 23.50
"(44A 29 28.99 28.98 28.75 28.75
"(44A���10-83 33 32.95 32.86 32.25 32.10
Y[XK 41 40.81 40.63 37.64 37.44

Table 11. AP of SURE

SIR Defects4J
AP Baseline AP Baseline

�>Eℎ8C -�>B 0.26 0.27 0.27 0.22
�>Eℎ8C -� 022 0.26 0.27 0.32 0.22
�>Eℎ8C -�D2;8 0.29 0.27 0.32 0.22
�>E2>D=C 0.34 0.27 0.43 0.22
"(44A 0.55 0.27 0.65 0.22
"(44A���10-83 0.63 0.27 0.68 0.22
Y[XK 0.79 0.27 0.85 0.22
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Fig. 8. Quantitatively measure the comprehensibility of failure indexing techniques.

even though the evaluation is extended to be independent of clustering algorithms, SURE can still
present promising performance.

As a reminder, "(44A���10-83 is not an existing published failure indexing technique, it is manu-
ally created by us to further evaluate the competitiveness of SURE. "(44A is the state-of-the-art
technique in the field of failure indexing.

6.4 RQ4: The Comprehensibility of SURE
In Section 1, we point out that one of the two longstanding challenges in failure indexing is the
lack of comprehensibility, that is, the evidence (i.e., the proxies for failed test cases) for how failure
indexing results were obtained is hard to comprehend for human developers, which could prevent
the results from being applied. The comprehensibility of a failure indexing technique essentially lies
in the comprehensibility of the failure proximity, because it is the failure proximity that represents
failures and hence provides human developers with the evidence of failure indexing. Here we
describe the comprehensibility of failure indexing techniques as follows:

A failure indexing technique is considered to have strong comprehensibility, if given
the failure indexing result as well as the evidence (i.e., the proxies for failed test cases)
for how this result was obtained, developers can be immediately convinced by the
result based on the evidence.

But this description cannot directly guide the investigation of RQ4, because it is subjective for
developers to determine whether they are convinced by the result or not, and it is difficult to
quantitatively measure the extent to which they are convinced. To tackle this problem, we propose
the following strategy to quantify the comprehensibility of a failure indexing technique:

Providing developers with only the evidence (i.e., the proxies for failed test cases) of a
failure indexing process, and letting them manually cluster failed test cases according
to the evidence. The closer their manual clustering outcomes are to the failure
indexing results, the better they comprehend the evidence, and thus, this failure
indexing technique has stronger comprehensibility.

The intuition behind this strategy can be described in Figure 8. Specifically, if only the evidence
of a failure indexing process is provided to developers, and the result of their manual clustering
based on that evidence is similar or even identical to the result of the failure indexing technique,
then when the failure indexing result as well as the evidence are provided together, they are able to
comprehend the evidence.
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Table 12. Nine Failure Indexing Tasks

Project Language # Failures # Faults Failure representation for developers
PMS Ranking lista Coverageb

Task-1 C 10 1 1, 4, 7, 10, 13, 16 2, 5, 8, 11, 14, 17 3, 6, 9, 12, 15, 18
Task-2 C 29 2 1, 4, 7, 10, 13, 16 2, 5, 8, 11, 14, 17 3, 6, 9, 12, 15, 18
Task-3 C 10 3 1, 4, 7, 10, 13, 16 2, 5, 8, 11, 14, 17 3, 6, 9, 12, 15, 18
Task-4 C 19 4 3, 6, 9, 12, 15, 18 1, 4, 7, 10, 13, 16 2, 5, 8, 11, 14, 17
Task-5 C 17 5 3, 6, 9, 12, 15, 18 1, 4, 7, 10, 13, 16 2, 5, 8, 11, 14, 17
Task-6 Java 6 2 3, 6, 9, 12, 15, 18 1, 4, 7, 10, 13, 16 2, 5, 8, 11, 14, 17
Task-7 Java 3 3 2, 5, 8, 11, 14, 17 3, 6, 9, 12, 15, 18 1, 4, 7, 10, 13, 16
Task-8 Java 4 4 2, 5, 8, 11, 14, 17 3, 6, 9, 12, 15, 18 1, 4, 7, 10, 13, 16
Task-9 Java 5 5 2, 5, 8, 11, 14, 17 3, 6, 9, 12, 15, 18 1, 4, 7, 10, 13, 16

a“Ranking list” denotes “Suspiciousness ranking lists.” The same in Table 13.
b“Coverage” denotes “Coverage vectors of execution frequency.” The same in Table 13.

As such, the clustering effectiveness made by human developers can serve as the comprehensi-
bility of a failure indexing technique. Hence, the evaluation metrics introduced in Section 5.4, i.e.,
+)
4@D0;

, (_")
�"�

, (_")
��

, (_")
%'

, and (_")
''

, can be directly employed in this RQ.
We recruit 18 participants to perform the human study, 15 of whom are graduate students in

Computer Science from Wuhan University and have at least four years of programming experience
(Participant-1 ∼ Participant-15). The remaining three are from top-tier Internet companies in
China and have five ∼ eight years of programming experience (Participant-16 ∼ Participant-18).
These 18 participants are selected to ensure they all have expertise in both C and Java, and they
are not compensated for their participation. They are requested to manually finish nine failure
indexing tasks (each task corresponds to an A -bug faulty program, where A = 1, 2, 3, 4, or 5).
Specifically, in each task, only a series of failed test cases are provided to participants, we did not
tell participants how many fault(s) triggered these failures and the mutual relationship among
these failures. Participants will manually divide all failures through two steps: (1) Estimating these
failures should be divided into howmany clusters, i.e., there are how many underlying faults behind
these failures. (2) Manually dividing failures according to the estimated number of clusters.

As for each task, its failed test cases are given in one of three forms of representation: PMS images,
suspiciousness ranking lists, and coverage vectors of execution frequency. Specifically, PMS images
are the new form of failure representation proposed in this article, suspiciousness ranking lists
are the failure representation of SD-based proximities (the most advanced strategy), and coverage
vectors are the failure representation of CC-based failure proximities (the most prevalent strategy).
Notice that at the beginning of the human study, we briefly introduce failure representation forms
of ranking lists and coverage to participants, showing them how a failure is translated into a
ranking list or a coverage vector (taking about five minutes and one minute, respectively). To
put it another way, participants become aware of the meaning of failure representation forms
of ranking lists and coverage in advance. On the contrary, we do not introduce how a failure is
translated into a PMS image to participants, this is because we want to know how well human
developers can comprehend failures in the form of PMS images without prior knowledge, to check
the human-friendliness of PMS images.

We concisely introduce the nine tasks in Table 12, including the programming language, the
number of observed failures in testing, as well as the number of underlying faults. From the
perspective of tasks, each task will be carried out by all of the 18 participants, among them, six are
based on PMS images, six are based on suspiciousness ranking lists, and six are based on coverage
vectors. For example, we can find that for Task-1, Participants 1, 4, 7, 10, 13, 16 will be based on PMS
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Table 13. Comprehensibility of Three Forms of Failure Representation

Participant
No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11 No. 12 No. 13 No. 14 No. 15 No. 16 No. 17 No. 18

Total

\Z
equal

2 3 2 3 3 3 3 3 3 2 3 2 1 3 3 3 3 3 48
Y_SZ

LSO 2.00 3.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00 2.00 3.00 2.00 1.00 3.00 3.00 3.00 3.00 3.00 48.00
Y_SZ

P I 2.00 3.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00 2.00 3.00 2.00 1.00 3.00 3.00 3.00 3.00 3.00 48.00
Y_SZ

VX 2.00 3.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00 2.00 3.00 1.96 1.00 3.00 3.00 3.00 3.00 3.00 47.96
Y_SZ

XX 2.00 3.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00 2.00 3.00 1.93 1.00 3.00 3.00 3.00 3.00 3.00 47.93

PMS

Average Time (s) 5.41 3.08 1.50 6.22 1.17 3.24 1.39 3.42 4.43 5.63 3.11 2.62 3.02 2.33 2.33 4.06 1.83 2.83 3.20
\Z
equal

2 0 3 2 0 1 0 1 2 2 1 1 1 0 3 0 0 1 20
Y_SZ

LSO 1.99 0.00 3.00 1.99 0.00 1.00 0.00 0.99 2.00 1.99 0.99 1.00 1.00 0.00 3.00 0.00 0.00 1.00 19.95
Y_SZ

P I 1.99 0.00 3.00 1.99 0.00 1.00 0.00 0.98 2.00 1.99 0.98 1.00 1.00 0.00 3.00 0.00 0.00 1.00 19.93
Y_SZ

VX 1.81 0.00 3.00 1.62 0.00 1.00 0.00 0.46 2.00 1.73 0.55 1.00 1.00 0.00 3.00 0.00 0.00 1.00 18.17
Y_SZ

XX 1.81 0.00 3.00 1.66 0.00 1.00 0.00 0.40 2.00 1.71 0.46 1.00 1.00 0.00 3.00 0.00 0.00 1.00 18.04

Ranking
list

Average Time (s) 14.33 25.37 18.50 23.21 34.92 21.08 27.38 44.98 13.92 13.11 20.63 16.83 4.69 33.35 6.33 23.69 31.45 21.42 21.96
\Z
equal

0 2 1 1 1 0 2 2 0 2 2 1 3 2 0 1 1 0 21
Y_SZ

LSO 0.00 1.99 1.00 1.00 1.00 0.00 2.00 1.99 0.00 2.00 1.99 0.99 3.00 2.00 0.00 1.00 1.00 0.00 20.96
Y_SZ

P I 0.00 1.99 1.00 1.00 1.00 0.00 2.00 1.99 0.00 2.00 1.98 0.99 3.00 2.00 0.00 1.00 1.00 0.00 20.95
Y_SZ

VX 0.00 1.72 1.00 1.00 1.00 0.00 2.00 1.72 0.00 2.00 1.62 0.48 3.00 1.87 0.00 1.00 1.00 0.00 19.41
Y_SZ

XX 0.00 1.66 1.00 1.00 1.00 0.00 2.00 1.72 0.00 2.00 1.66 0.47 3.00 1.87 0.00 1.00 1.00 0.00 19.38

Coverage

Average Time (s) 12.00 16.86 38.59 20.17 14.26 46.63 20.33 35.40 34.31 24.72 14.78 21.90 3.33 12.93 12.71 15.75 16.33 41.33 22.35

to perform failure indexing, Participants 2, 5, 8, 11, 14, 17 will be based on suspiciousness ranking
lists, and Participants 3, 6, 9, 12, 15, 18 will be based on coverage vectors, as shown by the italic
numbers in Table 12. Additionally, from the perspective of participants, each developer will handle
all of the nine tasks, among them, three for each of the three forms of representation. For example,
we can find that Participant-1 handles Task-1, Task-2, and Task-3 based on PMS images, handles
Task-4, Task-5, and Task-6 based on suspiciousness ranking lists, and handles Task-7, Task-8, and
Task-9 based on coverage vectors, as shown by the bold numbers in Table 12. As such, each form
of representation will be carried out for 54 times, as shown in the columns “PMS,” “Ranking list,”
and “Coverage” in Table 12.

The performance of human developers is given in Table 13.12 Take Participant-5 as an example,
as shown in the bold column “Participant-5” of Table 13. Participant-5 carries out nine failure
indexing tasks with three PMS-based, three ranking list-based, and three coverage-based ones. As
for the three PMS-based faulty versions, Participant-5 correctly estimates the number of faults on
all of them, i.e., the value of the cell (“PMS,” “+)

4@D0;
,” “Participant-5”) is three. The values of the

four clustering metrics, i.e., (_")
�"�

, (_")
��

, (_")
%'

, (_")
''

, are both 3.00. Considering that the
maximum values of FMI, JC, PR, and RR are 1.00, this result indicates that Participant-5 can achieve
perfect failure indexing based on PMS. But if based on the other forms of failure representation,
Participant-5 performs much worse. Specifically, “: == A” cannot be obtained on any faulty version
based on the representation of ranking lists, and only one faulty version can be properly handled
based on the representation of coverage. Moreover, the time cost of manual failure indexing is
also different among the three forms of representation. For example, Participant-5 takes 1.17s on
average to index each failure when it is represented as a PMS image, while takes 34.92s and 14.26s
on average when a failure is represented as a ranking list and a coverage vector, respectively. That
is to say, the proposed failure representation of PMS images enables developers to identify failures
with the same/different root cause(s) at a glance, further demonstrating its intuition and friendliness
toward human developers.

The other participants perform similarly to Participant-5: they all tend to achieve better failure
indexing with a lower time cost based on the failure representation of PMS, compared with using
the other two existing forms of representation. We summarize the human performance based on
12For a faulty version, consistent with the strategy in Section 5.4, we analyze the clustering effectiveness only when
“: == A ”, namely, the number of faults is correctly predicted.
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Fig. 9. The utility of failure indexing outcomes.

three forms of failure presentation in the column “Total” of Table 13. Specifically, regarding the
faults number estimation, human developers perform 140.00% and 128.57% better when using PMS
(48 out of 54 times) than when using ranking lists (20 out of 54 times) and coverage (21 out of 54
times), respectively. And the four clustering metrics show similar magnitude of improvements.
The time costs are 85.43% and 85.68% cheaper when using PMS (3.20s) than when using ranking
lists (21.96s) and coverage (22.35s), respectively. Revisiting the statements at the beginning of
this sub-section, we can conclude that the proposed failure representation of PMS has stronger
comprehensibility compared with the two most advanced and prevalent techniques.

Apart from the comprehensibility of PMS images, we are also concerned about the developers’
perception of the utility of the outcome of SURE, that is, the extent to which they will utilize failure
indexing outcomes (i.e, resulting clusters) when failures are in the form of PMS images. To this
end, we design an extra questionnaire that requires participants to give a score for the outcomes
of the mentioned failure indexing tasks, to quantitatively reflect the possibility of adopting the
outcome. Inspired by the design of human studies of prior works in the field of software testing
and debugging [77, 104], the extra questionnaire is based on a five-point Likert scale [41], where
one means strongly disagree to utilize and five means strongly agree to utilize. Similar with the
aforementioned human study, we also employ the failure representation forms of ranking lists
and coverage as baselines. The results are given in Figure 9. It can be seen that when failures are
represented as PMS images, the scores of utilities are all between four and five (the minimum value
is 4.44 given by Participant-10, and the maximum value is 5.00 given by Participant-6, Participant-11,
Participant-13, and Participant-18). On the contrary, if failures are represented as ranking lists or
coverage, the scores of utilities are all less than two. These results show a consensus among all
participants: given failure indexing outcomes with the failure representation form of PMS images,
they are more likely to utilize the outcome compared with failure representation forms of ranking
lists and coverage.
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Fig. 10. The divergence of the “: == A” faulty versions.

At the end of the human study, we interview the participants. The interview questions are
twofold: (1) How do you think about the benefit of PMS images in comprehending failure indexing
outcomes? And (2) Why are you more willing to utilize failure indexing outcomes when failures
are represented as PMS images? The interview is carried out in person or by telephone, with the
first three authors asking questions. We summarize the feedback they give and find that almost
all interviewees mention two points: (1) Based on PMS images, they can immediately justify how
many clusters the provided failures should be categorized into, and how they should be divided,
because the characteristic of visualization of PMS images is highly in tune with human intuition.
But when the other two representations are used, it always takes a lot of time to recognize failures,
and the process is very tough. (2) If failures are represented as PMS images, they can be better
convinced by failure indexing results and thus further apply them to the following debugging tasks.
This is because PMS images provide them with a more intuitive way to become aware of why a
pair of failures should (or should not) be put together at a glance, and this boosts their confidence
in failure indexing results.

7 Discussion
Some interesting topics related to our approach are further discussed in this section.

7.1 Faulty Versions Uniquely Handled by SURE
In the comparison between SURE and baseline techniques, we find that some faulty versions could
be only handled by a specific technique. That is, those “: == A” faulty versions achieved by different
techniques are not exactly the same. It is intuitive that the more faulty versions a failure indexing
technique is able to handle solely, the better this technique is. We further inspect SURE and the
baseline techniques from this heuristic aspect, the results are given in Figure 10 (Among the three
variants of �>Eℎ8C , we select �>Eℎ8C -�D2;8 as the representative due to its higher prevalence than the
other two).
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In Figure 10(a), we can find that of all SIR faulty versions in the test, 115 can be handled by SURE
only, while 69, 38, 32, and 23 can be handled by"(44A���10-83,"(44A ,�>E2>D=C , and�>Eℎ8C -�D2;8 only,
respectively. A similar observation can be drawn from Figure 10(b): of all Defects4J faulty versions,
13 can be handled by SURE only, while five, zero, zero, and zero can be handled by "(44A���10-83,
"(44A , �>E2>D=C , and �>Eℎ8C -�D2;8 only, respectively. The results reveal that no failure indexing
technique can be fully dominated by others, indicating a potential future direction of combining
the advantages of different classes of failure proximities together. Despite the respective superiority
of various techniques, SURE can solely handle more faulty versions than the other techniques. In
particular, it exceeds 66.67% and 160.00% by "(44A���10-83, the best-performed baseline technique,
in simulated and real-world environments, respectively.

7.2 Overhead of SURE
The time costs of SURE mainly involve three phases, namely, the failure representation, the distance
measurement (including the model training and the deployment), and the clustering. According
to our analyses, as for the failure representation, SURE takes 3.99 minutes and 5.90 minutes on
average to collect runtime memory information during the execution of a failed test case, on
SIR and Defects4J faulty versions, respectively. Then, SURE takes 0.18s and 0.27s on average
to convert a set of memory information to a PMS image, on SIR and Defects4J faulty versions,
respectively. As for the distance measurement, SURE takes 23 minutes and 35 seconds to train the
Siamese-based model.13 Once the model is trained, 0.01s and 0.06s on average are taken to predict
the distance between a pair of PMS images, on SIR and Defects4J faulty versions, respectively.
After these two steps are ready, the clustering process typically takes only a few seconds. To
summarize, the overhead of SURE mainly lies in querying runtime memory information at preset
breakpoints.

As pioneers have pointed out, failure indexing is essential yet very costly when it comes to
manual debugging in the real world. “Experienced developers can manually examine every failure
and determine the culprit fault, but this is apparently too expensive”, pioneers concluded [58]. In
contrast, SURE can complete this task automatically and hence can save a great deal of manual
effort, which is far less expensive than manual jobs. In particular, SURE represents a failed test
case as a PMS image, which can be smoothly comprehended by human developers at a glance and
thus can boost the comprehensibility of failure indexing outcomes. This can be of great importance
because if developers are not convinced by failure indexing outcomes, they will take much time to
verify their correctness. Even though coverage vectors (the failure representation of the CC-based
strategy) and statement ranking lists (the failure representation of the SD-based strategy) can also
provide insights for developers to comprehend failure indexing outcomes to an extent, they can be
human labor-intensive. To put it another way, we transfer the costs that would have been borne by
humans to machines. It is true that as compared with CC and SD-based techniques, SURE needs
higher costs. However, in return, SURE delivers better performance and convenience. Therefore, the
cost of SURE is acceptable: more sophisticated fingerprinting is naturally accompanied by higher
overhead, i.e., “no free lunch” [58].

8 Threats to Validity
Our experiments are subject to several threats to validity.

Threats to internal validity relate to the faulty versions we focus on to determine the clustering
effectiveness of a failure indexing technique. In the evaluation of clustering effectiveness, we
primarily consider those faulty versions that satisfy the condition of “: == A ,” i.e., where the

13The trained model is available in our repository, it can be directly applied in future failure indexing jobs.
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predicted number of faults : is equal to the real number of faults A . Actually, “: == A” is ideal but
not necessary for parallel debugging to work in practice. This is because if : exceeds A , : developers
will be employed to locate A faults, and parallel debugging can work at the cost of human labor
(: - A developers are redundant). On the contrary, if : is less than A , parallel debugging can also work
at the cost of more than one iteration of debugging. Filtering these faulty versions in the evaluation
of clustering effectiveness is because comparing : generated clusters with A oracle clusters when
“: != A” is difficult, and moreover, prior studies have pointed out that the performance of a failure
indexing technique can be mainly determined by those “: == A” faulty versions [27, 73], that is,
the contribution of “: != A” ones is marginal. Nonetheless, apart from evaluating failure indexing
techniques from the perspective of clustering effectiveness, we also utilize another metric, AP,
to deeply assess the effectiveness of PMS images by measuring the extent to which the failure
representation of PMS images prioritizes higher similarity for relevant failure pairs over irrelevant
ones. Such evaluation is independent of clustering algorithms and thus can include both “: == A”
and “: != A” faulty versions. Therefore, this threat to validity is acceptable.

Threats to external validity relate to the generalization capability of SURE. Specifically, given
that the evaluation of the effectiveness of SURE is carried out empirically, our results may not
be extended to all programs. In the experiments, we use nine projects from two open-source
platforms, which are written in different languages (C and Java) and with various functionalities,
thus mitigating the threat to an extent. In particular, we use only 30% of the simulated faults to
train the model, and use the remaining 70% of the simulated as well as real-world faults to test.
This allows us to have higher confidence with respect to the applicability of SURE.

Threats to construct validity relate to the adopted evaluation metrics. We use external metrics
(i.e., FMI, JC, PR, and RR) to measure SURE’s clustering effectiveness, and use the AP to measure
the effectiveness of the failure representation of PMS images. Despite the fact that these metrics
have been extensively used by previous works, we consider using more diverse metrics in our
future work for further evaluation.

9 Related Work
It is well-recognized that the failure proximity essentially underpins failure indexing techniques.
Liu et al. systematically summarized the status of the community of failure proximities, pointing
out that CC-based and SD-based strategies can deliver good results [58]. In fact, these two are
mainstream tactics in failure indexing to date, and numerous studies have emerged around them in
the last two decades.

Let us first focus on the CC-based strategy. As a very early work, Podgurski et al. suggested using
execution profiles, including coverage information, as the signature of failures [65]. Since then, this
tactic has become popular gradually. For example, Liu et al. formally presented the definition of
the CC-based failure proximity, and demonstrated its capability by experiments [58]. Högerle et al.
constructed failed test coverage matrices, and used the Weil-Kettler algorithm to rearrange the
mentioned coverage matrix into a block diagonal matrix thus achieving failure clustering [32]. Also
based on failed test coverage matrices, Steimann and Frenkel utilized two partitioning procedures
from integer linear programming to cluster failures, for breaking down the fault localization problem
into smaller ones [75]. Huang et al. were concerned with the impact of failure indexing on the
effectiveness of multi-fault localization. They conducted an empirical study to explore this topic
on the basis of takingCC as the representation of failures [34]. Wu et al. also employed CC as the
signature of failures to perform failure clustering. They iteratively chose the cluster of failures with
the highest density to conduct single-fault localization, until all faults were fixed [94].

Later, the SD-based strategy, a more sophisticated solution of failure proximity, was proposed
by Liu and Han [56], which regards two failures as similar if they suggest roughly the same fault
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location. Specifically, they used SOBER, a statistical model-based fault localization technique at the
predicate granularity [57], to complete the fault location suggestion process. From then on, the
SD-based strategy attracted more and more attention from academia. For example, Jones et al. used
Tarantula [39], an SBFL technique working at the statement granularity, to suggest finer-grained
fault location. As a result, the suspiciousness ranking list that reflects the possibility of each program
statement being faulty is utilized to represent failures [38]. Following the workflow of the SD-based
strategy, Gao and Wong proposed MSeer, which employed Crosstab [91], an empirically promising
SBFL technique, to produce the suspiciousness ranking list that represents failures [27]. MSeer is
also the state-of-the-art technique to date in the field of failure indexing. Song et al. investigated the
impact of the adopted SBFL techniques on the effectiveness of SD-based failure indexing, concluding
that MSeer can be further enhanced by replacing Crosstab with other risk evaluation formulas
[73]. Furthermore, they proposed a genetic programming-based approach to automatically evolve
formulas solely for failure indexing, and successfully delivered a batch of formulas with promising
failure representation effectiveness, such as EFF10-83 [74].

Despite the integration of fault localization techniques, the resource on which the SD-based
strategy relies is still only coverage. If failures that are triggered by distinct faults have the same
coverage, neither the CC-based nor the SD-based strategy can work well. However, this situation
has been demonstrated to be very common in practice, which causes performance degradation in
CC and SD strategies. Moreover, the failure representation (CC vectors for the CC-based failure
proximity and suspiciousness ranking lists for the SD-based failure proximity) is also tough and
time-consuming to comprehend by human developers, which hinders human comprehension of
failure indexing results. In this article, we propose SURE, a novel failure indexing technique, to
tackle the aforementioned threats to existing approaches. With the support of runtime memory
information, SURE remarkably improves the effectiveness of failure indexing, and PMS images, the
novel form of failure representation adopted by SURE, help human developers comprehend the
result of failure indexing better.

There are some recent works that introduce external profiles to support failure indexing, such as
code-independent features in regression testing [29], as well as code features and historical features
in continuous integration [4]. We do not consider such types of studies since they go beyond our
research scope: 1) Their source information cannot be always available, and 2) This article focuses
on failure indexing in the context of multi-fault debugging.

10 Conclusion
In this article, we propose the PM-based failure proximity, and based on that design a novel failure
indexing technique, SURE. Experimental results demonstrate the high competitiveness of SURE: it
can achieve 101.20% and 41.38% improvements in faults number estimation, as well as 105.20% and
35.53% improvements in clustering, compared with the state-of-the-art technique in this field to
date, in simulated and real-world environments, respectively. SURE also provides human developers
with insights to better comprehend the failure indexing results. Our human study involving 18
participants shows that the form of failure representation of SURE, i.e., PMS images, can boost
human developers’ comprehension of failure indexing results by 140.00% and 128.57% compared
with the two most advanced and prevalent strategies, while the time cost is reduced by 85.43% and
85.68%, respectively.

In the future, we plan to dig deeper into the characteristics of various forms of failure proximities,
and try to combine their advantages for better extracting the signature of failures. A more extensive
experiment with a larger scale of benchmarks as well as more diverse evaluation metrics is also
being considered.
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