
The Journal of Systems & Software 193 (2022) 111452

Y
S

o
c
c
d
e
s

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A comprehensive empirical investigation on failure clustering in
parallel debugging✩

i Song, Xiaoyuan Xie ∗, Quanming Liu, Xihao Zhang, Xi Wu
chool of Computer Science, Wuhan University, China

a r t i c l e i n f o

Article history:
Received 24 November 2021
Received in revised form 13 July 2022
Accepted 15 July 2022
Available online 26 July 2022

Keywords:
Failure clustering
Fault isolation
Multiple-fault
Parallel debugging

a b s t r a c t

The clustering technique has attracted a lot of attention as a promising strategy for parallel debugging
in multi-fault scenarios, this heuristic approach (i.e., failure indexing or fault isolation) enables
developers to perform multiple debugging tasks simultaneously through dividing failed test cases into
several disjoint groups. When using statement ranking representation to model failures for better
clustering, several factors influence clustering effectiveness, including the risk evaluation formula (REF),
the number of faults (NOF), the fault type (FT), and the number of successful test cases paired with one
individual failed test case (NSP1F). In this paper, we present the first comprehensive empirical study of
how these four factors influence clustering effectiveness. We conduct extensive controlled experiments
on 1060 faulty versions of 228 simulated faults and 141 real faults, and the results reveal that: (1)
GP19 is highly competitive across all REFs, (2) clustering effectiveness decreases as NOF increases, (3)
higher clustering effectiveness is easier to achieve when a program contains only predicate faults, and
(4) clustering effectiveness remains when the scale of NSP1F is reduced to 20%.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Programs often produce unexpected results that deviate from
racles during software testing, such anomalous behavior indi-
ates that at least one fault resides in the program. However, lo-
ating these faults is generally labor-intensive and tedious in the
ebugging process (Wong et al., 2016; Xiaobo et al., 2018). Gen-
rally, in multi-fault scenarios, there are two commonly adopted
trategies:

• Sequential debugging. Ignoring the linkage between failed
test cases and faults, this strategy detects, localizes, and fixes
one fault, and then reruns the test suite (TS, which contains
all test cases) on the semi-repaired program under test
(PUT) again, iterates these steps until a failure-free program
is delivered.

• Parallel debugging. This strategy first mines the linkage
that exists between failed test cases and faults, that is,
divides all failed test cases into several disjoint fault-focused
clusters through clustering techniques (with the goal of
the failed test cases in a cluster to be triggered by the
same root cause, and the failed test cases in different clus-
ters to be triggered by different root causes), and com-
bines each fault-focused cluster with all successful test cases

✩ Editor: Matthias Galster.
∗ Corresponding author.

E-mail address: xxie@whu.edu.cn (X. Xie).
ttps://doi.org/10.1016/j.jss.2022.111452
164-1212/© 2022 Elsevier Inc. All rights reserved.
to form several fault-focused TS, finally assigns them to
different developers for parallel localization (Jones et al.,
2007).

Many empirical studies have shown that sequential debugging
does not perform well in localizing multiple faults (DiGiuseppe
and Jones, 2011a,b, 2015), while parallel debugging shows
promise in this area. The core of parallel debugging lies in clus-
tering. Only by properly capturing the linkage between failed
test cases and faults, as well as heuristically dividing failed test
cases, can a hunk of localization task be decomposed into several
sub-tasks with high quality. However, most previous research
in terms of parallel debugging concentrated on the localiza-
tion process after clustering, with only a few studies inves-
tigating the clustering process, one of the most critical steps
that may affect the overall parallel debugging performance. Sev-
eral factors may affect the failure clustering step, but there is
a lack of comprehensive empirical studies investigating these
variables.

Therefore, in this paper, we conduct the first comprehensive
empirical investigation, aiming at the clustering step by selecting
four factors that could influence clustering effectiveness: the risk
evaluation formula (REF) that represents failed test cases, the
number of faults (NOF) and the fault type (FT) contained in the
program, and the number of successful test cases paired with
one individual failed test case (NSP1F), and further proposing four
research questions as follows to guide our extensive experiments
(these abbreviations are listed in Table 1 for easy tracking).

https://doi.org/10.1016/j.jss.2022.111452
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111452&domain=pdf
mailto:xxie@whu.edu.cn
https://doi.org/10.1016/j.jss.2022.111452

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

b
a
t
s
T
v
m
t
c

Table 1
Abbreviations and their full forms.
Abbreviations Full forms

REF Risk Evaluation Formula
NOF The Number Of Faults
FT The Fault Type

NSP1F The Number of Successful test cases Paired with
ONE Failed test case

TS Test Suite
PUT Program Under Test
AF Assignment Fault
PF Predicate Fault

• RQ1: Do different REFs have the same capability to repre-
senting failed test cases?

Failed test cases are typically too unstructured and abstract to
e used directly for clustering. Many approaches, such as cover-
ge vector representation (CVR) and statement ranking represen-
ation (SRR), have been utilized to convert failed test cases into
tructured and mathematical forms. CVR is similar to
-proximity (Trace-proximity) in Liu et al. (2008), in which a
ector with a length equal to the number of executable state-
ents in PUT is created to represent a failed test case, with

he value of the ith element being set to 1 if this failed test
ase covers the ith statement, and 0 otherwise. SRR is similar to
R-proximity (Rank-proximity) in Liu et al. (2008), in which one
failed test case and successful test cases are executed on PUT, and
the coverage information of the program execution is collected
and organized in the form of notations defined in spectrum-
based fault localization (SBFL) (Xie and Xu, 2021). The coverage
is then input into an REF to produce a ranking list that reflects
statements’ suspiciousness, which is employed to represent this
failed test case finally. SRR has been proved to be superior to
CVR in representing failed test cases (Liu et al., 2008), which
has also been adopted by a number of previous research due to
its advantage in translating a failed test case into a clustering-
friendly proxy (Cao and Jiang, 2017; Yu et al., 2015; Wang et al.,
2014; Gao and Wong, 2019).

In SRR, REF is used to produce a ranking list that contains
the execution features of a failed test case. Obviously, a better
REF should extract more discriminative features for failed test
cases caused by different root causes, in other words, the distance
between ranking lists that represent failed test cases triggered
by different faults should be greater than the distance between
ranking lists that represent failed test cases triggered by a same
fault. However, almost all existing studies only simply chose
a specific REF to generate the ranking list. To the best of our
knowledge, no research has contrasted the capabilities of various
REFs in representing failed test cases. To that end, we analyze 35
commonly-used REFs through extensive experiments in this RQ
from this perspective.

• RQ2: How NOF affects clustering effectiveness?
Although it is difficult to know whether a faulty program con-

tains a single fault or multiple faults exactly, we can intuitively
infer the more faults it has, the more effort and time the debug-
ging process will take (DiGiuseppe and Jones, 2011b; Xue and
Namin, 2013). Many studies have investigated the effect of NOF
on the effectiveness of fault localization techniques (DiGiuseppe
and Jones, 2011b, 2015; Jones et al., 2002), but few have explored
the influence of NOF on the clustering process. We analyze how
clustering effectiveness changes as NOF grows in 2-bug, 3-bug, 4-
bug, and 5-bug scenarios (i.e., programs that contain 2, 3, 4, and
5 bugs, respectively).

• RQ3: Is clustering effectiveness affected by FT?
In addition to NOF, FT is also an essential factor in the de-

bugging process. Although the randomness and uncertainty of
2

the programming process determine the diversity of the intro-
duced faults, the most common FTs typically refer to assignment
faults (Jeffrey et al., 2008) and predicate faults (Xuan et al., 2016).
If a program has only assignment faults, only predicate faults, or
both of them, how will the clustering effectiveness be affected?
We discuss each of the three scenarios separately.

• RQ4: Will clustering effectiveness be reduced using a
lower NSP1F?

When using SRR to represent failed test cases, almost all
researchers pair one individual failed test case with all successful
test cases (Cao and Jiang, 2017; Yu et al., 2015) without giving any
reason or explaining the rationality behind this strategy. If one
failed test case is paired with part of rather than all successful
test cases, the cost of debugging will be probably reduced, but
will this reduction harm clustering effectiveness? We contrast the
clustering effectiveness in five scenarios by pairing a failed test
case with X percent of successful test cases (X = 100, 80, 60, 40,
20).

Furthermore, the distance metric, the estimation of the num-
ber of clusters and the assignment of initial medoids, as well as
the clustering algorithm are also critical factors in determining
clustering effectiveness in parallel debugging. Gao and Wong
have proposed a parallel debugging approach, MSeer (Gao and
Wong, 2019), to solve the aforementioned concerns. In particular,
they revised the traditional Kendall tau distance (Kendall and
Gibbons, 1990), presented an innovative strategy to assign initial
medoids during predicting the number of clusters based on the
mountain method (Yager and Filev, 1994; Chiu, 1994), and refined
the K-medoids clustering algorithm (Kaufman and Rousseeuw,
2009). We will discuss our four research questions and conduct
experiments based on MSeer due to its innovation and high
effectiveness. A further introduction regarding MSeer is given in
Section 2.3.

We create 1060 faulty versions of nine programs, flex, grep,
gzip, sed, Chart , Closure, Lang , Math, and Time, as our benchmark.
The experimental results show that1:

(1) GP19 (the 19th formula evolved by Genetic Programming
in Yoo (2012)) is highly competitive across all REFs when
representing failed test cases.

(2) Clustering effectiveness decreases as NOF grows.
(3) Higher clustering effectiveness is easier to achieve when a

faulty program contains only predicate faults.
(4) Clustering effectiveness remains when NSP1F is reduced to

20%.

The main contributions of this paper are as follows:

(1) Unlike previous studies that contrasted REFs from the per-
spective of fault localization effectiveness, we contrast 35
REFs (including the latest Crosstab, Dstar, and GP02, GP03,
GP19 evolved by genetic programming) in terms of how
well they represent failed test cases. We recommend GP19,
an REF with strong competitiveness in extracting failed test
cases’ execution features for future researchers.

(2) Our controlled experiments reveal that the effectiveness of
clustering failed test cases will reduce when NOF increases.

(3) We analyze two typical types of faults, assignment faults
and predicate faults, and discover that it is easier to achieve
higher clustering effectiveness when a program contains
only predicate faults.

(4) We pair 100%, 80%, 60%, 40%, and 20% of successful test
cases with one failed test case, and contrast the clustering
effectiveness in these five scenarios. The findings indicate

1 The replication package of this empirical study is available at this website.

https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

t
t
p
S
w
i

2

p
p
f
S

2

n
e
g
g

c
c
c
p
b
e
f
r
s
S
r
2
m
c
a
p
a

t
W
a
b
a
T
m
i

F

f

w
f
f
e

i

p
m
t
i
X

a
f
f
i

a

that cutting the scale of successful test cases has little
effect on clustering effectiveness, suggesting a way worth
trying to lower the cost of SRR representation for future
researchers.

The remainder of this paper is organized as follows: Sec-
ion 2 introduces the background knowledge. Section 3 describes
he experimental dataset and setup. Section 4 analyzes the ex-
erimental results. Section 5 discusses some interesting topics.
ection 6 is the threats to validity. Section 7 reports related
orks. Conclusions and directions for future work are proposed

n Section 8.

. Background

We explain why clustering failed test cases is essential and
resent the rationale of parallel debugging in Section 2.1. The
rinciples and technical details of SRR are given in Section 2.2,
ollowed by a motivating example showing the application of
RR-based failure clustering in Section 2.3.

.1. Why clustering?

In general, the possibility of a program being faulty and the
umber of faults it contains are proportional to its size (Wang
t al., 2008). With the increasing volume and the explosive
rowth of code in modern software systems, most faulty pro-
rams usually have multiple faults.
In multi-fault scenarios, various failed test cases2 may be

aused by different faults. If failed test cases with distinct root
auses are not divided properly, fault localization techniques
ould be confused by the impure test suite significantly, for exam-
le, SBFL techniques extract execution features of all faults guided
y the impure spectrum information, which will lower the rank of
ach fault in the generated ranking list. According to Wang et al.
ailed test cases that are not related to specific fault are the main
eason to reduce the effectiveness of SBFL (Wang et al., 2020), and
imilarly, Keller et al. have drawn a similar conclusion, when using
BFL techniques, the number of lines that need to be inspected can be
educed by high quality test cases that execute the bug (Keller et al.,
017). Therefore, the purpose of dividing failed test cases in a
ulti-fault scenario is to allow failed test cases with different root
auses to target their corresponding faults separately, to put it
nother way, reduce the interferences among multiple faults in a
rogram, enhance the pertinence of fault localization techniques
nd thus achieve parallel debugging.
Many researchers have attempted to employ the clustering

echnique to divide failed test cases (Jones et al., 2007; Gao and
ong, 2019; Wu et al., 2020; Golagha et al., 2019; DiGiuseppe

nd Jones, 2012). Ideally, failures caused by the same fault should
e grouped into a cluster, then the failed test cases in a cluster
re combined with all successful test cases to form a fault-focused
S targeting a specific fault, as defined in Formula (1) and For-
ula (2). This strategy is often called failure indexing or fault

solation.

t = F1 ∪ F2 ∪ · · · ∪ Fr (1)

ault-focused TSi = Fi ∪ S(i = 1, 2, . . . , r) (2)

here Ft and S represent all failed test cases and all success-
ul test cases in TS, respectively. F1, F2, . . . , Fr are generated
ault-focused clusters, and r is the number of clusters (which is
xpected to be equal to the number of faults).

2 In this paper, we use ‘‘failed test case’’, ‘‘anomalous execution’’, and ‘‘failure’’
nterchangeably.
3

Table 2
Notations in spectrum information.
Notation Meaning

NCF The number of failed test cases covering a statement
NUF The number of failed test cases not covering a statement
NCS The number of successful test cases covering a statement
NUS The number of successful test cases not covering a statement
NC The number of test cases covering a statement
NU The number of test cases not covering a statement
NS Total number of successful test cases
NF Total number of failed test cases
N Total number of test cases

Clustering failed test cases is a heuristic strategy for improving
the pertinence of TS and the effectiveness of fault localization,
this widely acknowledged method has been adopted by many
previous studies in the field of multi-fault localization (Gao and
Wong, 2019; Podgurski et al., 2003; Steimann and Frenkel, 2012).

It is vital to encode failed test cases in an intermediate repre-
sentation due to their unfriendly form for clustering. Currently,
the most widely used representation methods are aforemen-
tioned CVR and SRR. The technical details of SRR, which is em-
ployed to conduct experiments in this paper, are described below.

2.2. Statement ranking representation

After TS have been executed on PUT, the coverage information
of each test case that contains two components will be collected
in SRR:

• Execution Path: A binary vector that records which pro-
gram entities (statements,3 branches, functions, or basic
blocks) (Reps et al., 1997; Harrold et al., 2000) have been
covered by a test case.

• Execution result: A binary value denotes whether or not the
actual output of a test case matches its expected output.

Suppose there is a PUT containing j executable statements si
(i = 1, 2, . . . , j) and a TS containing p test cases ti (i = 1, 2, . . . ,
), the coverage generated by running TS against PUT should be a
atrix of size j × p. In SRR, the coverage gathered against a failed

est case and successful test cases will be converted into spectrum
nformation according to the notations defined in SBFL (Xie and
u, 2021), as shown in Table 2.4
To incorporate several notations in spectrum information into

suspiciousness value that measures the risk of a statement being
aulty, researchers have constructed a series of risk evaluation
ormulas. For example, Ochiai proposed by Abreu et al. is defined
n Formula (3) (Abreu et al., 2006):

suspiciousness Ochiai =
NCF

√
NFNC

(3)

The statements5 in PUT are ranked according to their sus-
piciousness in descending order to deliver a ranking list. This
type of ranking list, which is produced by an REF from spectrum
information that reflects the execution features of a failed test
case and successful test cases, is employed to represent this failed
test case in SRR.

2.3. Motivating example

The workflow of SRR-based failure clustering is illustrated in
Fig. 1. Test cases in the test suite can be determined as failed or

3 We implement the statement granularity in our experiments, hence ‘‘entity’’
nd ‘‘statement’’ are interchangeable hereafter.
4 Also referred to as aef , anf , aep , anp , ae , an , ap , af , a, respectively.
5 Unless otherwise specified, ‘‘statement’’ refers to ‘‘executable statement’’ in

this paper.

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

s
t
o
w
f
a
b
t
t
i
b
t
b
a
t
a
K
s
r
t
c
a
a
p
i
o
a
w

a
i
c
i
r
=

=

c
T
a
1
i

a
t
g
s
0
c
s
r
a

i
c

Fig. 1. The workflow of SRR-based failure clustering.

uccessful after being executed against the program, according
o the inconsistency or consistency between actual and expected
utputs, respectively. Each of failed test cases will be combined
ith successful test cases and then be fed into a risk evaluation

ormula, for delivering a ranking list that could represent it in
mathematical form. Once fault-focused clusters are produced
y clustering these ranking lists, they will be immediately sent
o different handlers for the following step. It should be noted
hat after failed test cases have been transformed to ranking lists,
t is necessary to preprocess such data by measuring distances
etween them, estimating the number of clusters, and assigning
he initial medoids, and only after all of these procedures have
een fulfilled can the clustering algorithm begin to work. MSeer,
n advanced framework for localizing multiple faults in parallel
hat alleviated these challenging jobs, has been proposed by Gao
nd Wong (2019). Specifically, they (1) claimed that in the classic
endall tau distance metric, discordant pairs of more suspicious
tatements should contribute more to the distance between two
anking lists, and proposed a modified distance metric based on
his intuition; (2) assigned a potential value to each of failed test
ases (ranking lists) based on data winsorization, and developed
n algorithm to judge whether a failed test case should be chosen
s one of medoids; (3) relieved the shortcoming of examining all
ossible combinations of data points as initial medoids that exists
n the traditional K-medoids clustering algorithm. We conduct
ur experiments based on MSeer because it has been recognized
s one of the state-of-the-art parallel debugging techniques, along
ith its availability and reliability.
Let us use a motivating example to illustrate the details of SRR

s well as demonstrate the promise of failure clustering. As shown
n Table 3, the PUT that contains 11 statements, is designed to
alculate the product of the smaller two of the three numbers,
n which two faults have been induced by statements s6 and s9,
espectively. Give a TS containing 10 test cases: t1 = {1,2,4}, t2
{4,3,2}, t3 = {3,2,4}, t4 = {5,1,6}, t5 = {2,6,5}, t6 = {6,5,1}, t7
{7,5,8}, t8 = {5,7,3}, t9 = {8,1,2}, t10 = {8,6,9}, six of them are

labeled as failed due to the unexpected outputs (t3, t4, t5, t7, t8,
t10). The 11 × 10 matrix composed of rows s1 to s11 and columns
t1 to t10 in Table 3 is the coverage obtained by running TS against
PUT, where t1 ∼ t10 columns represent the execution paths of
10 test cases. The symbol ‘‘·’’ denotes that a test case covers an
innocent statement, while ‘‘▲’’ and ‘‘△’’ denote that a test case
overs the statements containing Fault1 and Fault2, respectively.
he coverage information is reorganized to spectrum information
ccording to the notations defined in Table 2, as shown in the
1 × 9 matrix composed of rows s1 to s11 and columns NCF to N
n Table 3.
 i

4

Each statement’s suspiciousness is then generated by Ochiai,
s shown in column Ft ∪ S in Table 3. We can immediately sort
hese statements in descending order of suspiciousness, and then
et a ranking list of them: s9, s1, s2, s7, s8, s5, s6, s3, s4, s10, s11. The
tatement s9 containing Fault2 has the highest suspiciousness of
.82, hence it will be inspected first. However, the statement s6
ontaining Fault1 is ranked seventh, innocent statements s1, s2,
7, s8 and s5 will be examined before s6. This simple example
eveals that the impure TS has a limited capability to delivering
promising fault localization output.
Now we depict how fault localization effectiveness will be

mproved by grouping failed test cases into distinct fault-focused
lusters. This is also a step-by-step elaboration of Fig. 1.

• For the failure representation. We employ SRR to repre-
sent all six failed test cases. Take t5 as an example. Pairing
t5 with S to form a failure-specific TS, t5 ∪ S, executing this
TS on PUT to obtain coverage and convert it into spectrum
information,6 and then utilizing a risk evaluation formula
(e.g., Ochiai) to incorporate the spectrum information for
obtaining each statement’s suspiciousness, finally, a ranking
list can be produced to represent t5, as shown in Table 4,
which will be invoked in the subsequent clustering process
as a proxy of t5. It should be noted that there are many
ways for producing a ranking list according to statements’
suspiciousness (Huang et al., 2013). Considering the intu-
ition that a ranking list should clearly reflect the priority
of a statement being inspected, as well as other previous
studies’ experience (Huang et al., 2013), we adopt the fol-
lowing ranking strategy: if several statements with the same
suspiciousness form a Tie (Xu et al., 2011), the rankings of
all statements in the Tie will be set to the beginning position
of this Tie.

• For the distance metric. Given two ranking lists that rep-
resent failed test cases, the classical Kendall tau distance
counts the number of pairwise disagreements between
them. Considering the characteristic of ranking lists in the
context of failure representation, discordant pairs of more
risky statements (i.e., at lower positions in the ranking lists)
should be paid more attention. Based on this intuition,
we use the revised Kendall tau distance, which takes the
reciprocal of the position of statements in the discordant
pairs (Gao and Wong, 2019), to measure the similarity
between each pair of failed test cases.

• For the estimation of the number of clusters and the
assignment of initial medoids. We assign a potential value
for each failed test case according to the density of its
surrounding, to reflect the possibility of it being set as a
medoid, and the failed test case with the highest potential
value will be selected as the first medoid. Then, all failed
test cases’ potential values will be updated based on how
far they are from the newest medoid. Repeating these steps
iteratively until the highest potential value falls within a
predefined threshold, and as a consequence of which, the
number of clusters and initial medoids can be determined
at the same time (Gao and Wong, 2019).

• For the clustering algorithm. The K-medoids clustering
approach sets practical (not virtual) data points as medoids,
aiming at minimizing the distance between failed test cases
and the medoid of the cluster where they reside. Its tradi-
tional version suffers from two tricky problems, namely, the
difficulty of choosing a proper distance metric and the over-
head caused by examining all possible combinations of data

6 This failure-specific TS’s coverage and the corresponding spectrum
nformation are omitted due to limited space.

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

o
p

i

Table 3
The sample PUT and its coverage against the given TS.

S Program Coverage information Spectrum information Suspiciousness

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 NCF NUF NCS NUS NC NU NS NF N Ft ∪ S F1 ∪ S F2 ∪ S

s1 input a, b, c · · · · · · · · · · 6 0 4 0 10 0 4 6 10 0.77 0.58 0.71
s2 if (a < b): · · · · · · · · · · 6 0 4 0 10 0 4 6 10 0.77 0.58 0.71
s3 if (b < c): · · · 2 4 1 3 3 7 4 6 10 0.47 0.82 0
s4 z = a * b · 0 6 1 3 1 9 4 6 10 0 0 0
s5 else: · · 2 4 0 4 2 8 4 6 10 0.58 1 0
s6 z = b * c //Fault1 ✓z = a * c ▲ ▲ 2 4 0 4 2 8 4 6 10 0.58 1 0
s7 else: · · · · · · · 4 2 3 1 7 3 4 6 10 0.62 0 0.76
s8 if (a < c) · · · · · · · 4 2 3 1 7 3 4 6 10 0.62 0 0.76
s9 z = a * c //Fault2 ✓z = a * b △ △ △ △ 4 2 0 4 4 6 4 6 10 0.82 0 1
s10 else · · · 0 6 3 1 3 7 4 6 10 0 0 0
s11 z = b * c · · · 0 6 3 1 3 7 4 6 10 0 0 0
f

3

r
u
i
f
s
(
(
r
i
t
e

Table 4
Statements’ suspiciousness calculated by Ochiai in the sample PUT against t5 ∪S
and the corresponding ranking list.
Statement s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
Suspiciousness 0.45 0.45 0.71 0 1 1 0 0 0 0 0
Ranking list 4 4 3 6 1 1 6 6 6 6 6

samples as initial medoids. The aforementioned two strate-
gies can properly handle these two points, respectively, thus
an improved K-medoids algorithm can be delivered and
used in our failure clustering (Gao and Wong, 2019). In the
motivating example, failed test cases t5 and t8 are triggered
by Fault1, and t3, t4, t7, and t10 are triggered by Fault2. Ideally,
the clustering results should be F1 = {t5, t8}, F2 = {t3, t4, t7,
t10}.7

• For the bug triage. Two fault-focused TSs, F1 ∪ S, F2 ∪ S, can
be produced by combining F1 and F2 with all successful test
cases S separately, and two sets of spectrum information
can be collected by executing them on PUT accordingly.8
The suspiciousness of statements calculated by Ochiai using
these two sets of spectrum information is shown in columns
F1 ∪ S and F2 ∪ S in Table 3, respectively. In the ranking list
produced against F1∪S, the statement s6 where Fault1 lies in
is given the highest suspiciousness, while in the ranking list
produced against F2∪S, the statement s9 where Fault2 lies in
is given the highest suspiciousness. Surprisingly, each faulty
statement appears at the top of the corresponding ranking
list. Guided by such fault localization outputs with strong
pertinence, a developer (in sequential debugging), or two
developers (in parallel debugging), only need(s) to inspect
at most three statements (the suspiciousness of s5 and s6
calculated against F1 ∪ S is identical) for localizing all two
faults. However, at least six statements have to be examined
for finding two faults in the confusing ranking list produced
without clustering failed test cases.

This motivating example not only highlights the promise of
clustering failed test cases but also indicates some key factors
in such a process: the risk evaluation formula (REF) that pro-
duces ranking lists to representing failed test cases, the number
of successful test cases paired with one individual failed test
case (NSP1F), may influence clustering effectiveness. Further-
more, considering that the effect of the number of faults (NOF)
and the fault type (FT) in PUT on software debugging has caught

7 For more details about the distance metric, the estimation of the number
f clusters and the assignment of initial medoids, and the clustering algorithm,
lease refer to Gao and Wong (2019).
8 These two fault-focused TSs’ coverage and the corresponding spectrum

nformation are omitted due to limited space.
5

Table 5
Subject programs.
Project Version kLOC No. of faults Description

flex 2.5.3 14.5 30AF + 46PF Lexical analyzer
grep 2.4 13.5 27AF + 20PF File patterns searcher
gzip 1.2.2 7.3 24AF + 20PF Data compressor
sed 3.02 10.2 21AF + 40PF Text processor
Chart 2.0.0 96.3 18 Chart library
Closure 2.0.0 90.2 36 Closure compiler
Lang 2.0.0 22.1 38 Apache commons-lang
Time 2.0.0 28.4 20 Date and time library

the attention of fault localization communities (DiGiuseppe and
Jones, 2011b, 2015; Jones et al., 2002), we conjecture these two
points are also likely to affect the results of clustering. We con-
duct extensive controlled experiments to explore how these four
factors affect the clustering process in the next section.

3. Experimental setup

Section 3.1 provides the dataset used in our experiments and
the mechanism for generating multi-fault versions via mutation-
based strategies. Section 3.2 describes experimental setups for
four RQs. Section 3.3 introduces four metrics for evaluating the
experimental results.

3.1. The generation of faulty versions

We choose four benchmark programs from SIR (SIR, 2018):
flex, grep, gzip, and sed, and five benchmark programs from De-
fects4J (Just et al., 2014a): Chart , Closure, Lang , Math, and Time,
or the generation of multi-fault versions, as shown in Table 5.

.1.1. SIR programs
SIR (Software-artifact Infrastructure Repository) contains a se-

ies of programs written in C that can be expropriated for the
se of fault localization. We employ mutation-based strategies to
nject multiple artificial faults into four SIR benchmark programs
or generating faulty versions (Papadakis et al., 2019). Research
uch as Andrews et al. (2005), Do and Rothermel (2006), Liu et al.
2006), Andrews et al. (2006), Pradel and Sen (2018) and Just et al.
2014b) has confirmed that mutation-based faults can simulate
eal-world faults and provide credible results for experiments
n the field of software testing and debugging. The following
wo fault types are defined to mutate source code, which is
xemplified in Fig. 2:

• Assignment Fault (AF): Editing a variable’s value in the state-
ment, or replacing the operators such as addition, subtrac-
tion, multiplication, division, etc. with each other (Fig. 2(a));

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

g
r
v
g
f
N

2
c
5
t
r
t

3

o
b
r
u
c
R
n
c
b
s
o
v
f
e

t
f

Fig. 2. Two fault types.

• Predicate Fault (PF): Reversing the if -else predicate, or delet-
ing the else statement, or modifying the decision condition,
and so on. (Fig. 2(b)).

After a mutation-based fault is seeded into a benchmark pro-
ram, a 1-bug faulty version has been generated. To create an
-bug faulty version, the faults from r individual 1-bug faulty
ersions are injected into the same program. This method of
enerating a multi-fault version by synthesizing multiple 1-bug
aulty versions has been adopted by many studies (Lamraoui and
akajima, 2016; Yu et al., 2015; Huang et al., 2013).
A total of 960 multi-fault versions have been generated using

28 faults on SIR programs.9 From the perspective of NOF, they
an be categorized into four classes, i.e., 2-bug, 3-bug, 4-bug, and
-bug, according to how many faults a faulty version contains. On
he other hand, from the perspective of FT, they can be catego-
ized into three classes, i.e., TypeA, TypeP, and TypeH, according
o the fault type(s) involved in a faulty version.

• TypeA: This type of multi-fault version is generated by r 1-
bug faulty versions that contain assignment fault (each of r
faults contained in a TypeA faulty version is AF).

• TypeP: This type of multi-fault version is generated by r 1-
bug faulty versions that contain predicate fault (each of r
faults contained in a TypeP faulty version is PF).

• TypeH: This type of multi-fault version is generated by r 1-
bug faulty versions that contain both assignment fault and
predicate fault (AF and PF are hybridly contained in a TypeH
faulty version).

.1.2. Defects4J programs
Defects4J gathers a collection of real-world bugs from some

pen-source projects, due to the realism and ease-to-use, it has
een becoming one of the most popular benchmarks in the cur-
ent field of fault localization. Nonetheless, Defects4J is often
tilized in single-fault rather than multi-fault environments, be-
ause each of its faulty versions only targets a specific fault.
ecently, researchers revisited this benchmark and concluded a
ew point, that is, many of Defects4J faulty versions actually
ontain more than one fault, but only one of them can be revealed
y the provided test suite. To adapt Defects4J to multi-fault
cenarios, An et al. transplanted the fault-revealing test case(s)
f another faulty version or other faulty versions to a basic faulty
ersion, that is, enabling a strengthened test suite to detect more
aults in the original program (i.e., the basic faulty version) (An
t al., 2021).

9 When two or more specific faults exist in a program, the program may fail
o compile, enter an infinite loop, or run for an excessive amount of time. These
aulty versions were removed.
6

Following this strategy, a total of 100 multi-fault versions
have been generated using 141 faults on Defects4J programs. It
should be highlighted that the generation of multi-fault Defects4J
programs involves two limitations. First, it is more difficult to
generate multi-fault versions that contain more bugs. The faults
in Defects4J come from real-world programming practice, to pre-
serve such a characteristic, we use test cases transplantation
instead of source code modification during the generation of
multi-fault versions. Specifically, the majority of Defects4J faulty
versions are indexed chronologically according to the revision
date, a lower ID indicates a more recent version (An et al., 2021),
thus the fault in a newer version is also likely to be contained in
an older version. For example, we find that the fault in Lang-27
also appears in Lang-28, thus we can add the failed test case of
Lang-27 to the test suite of Lang-28, for the generation of a 2-bug
version, Lang-27-28. However, it is more difficult to search for a
5-bug version than a 2-bug version, since the more faults, the less
likely they co-exist in a same program originally. For this reason,
in the created 100 Defects4J multi-fault versions, half of them
are 2-bug, and 25, 16, and 9 ones are 3-bug, 4-bug, and 5-bug,
respectively. Second, as mentioned above, the faults in Defects4J
are not obtained by artificial simulation, thus they cannot be
properly categorized into assignment fault or predicate fault.
As the consequence of these two problems, Defects4J programs
are not suitable for exploring RQ2 (How NOF affects clustering
effectiveness?) and RQ3 (Is clustering effectiveness affected by
FT?).

In summary, RQ1 and RQ4 will be investigated on all faulty
versions that comprise both SIR and Defects4J, considering that
these two topics do not involve the number of faults and fault
types. And RQ2 and RQ3 will be investigated on SIR, since we
can hardly set a proper and fair environment to explore the two
questions on Defects4J.

3.2. Experiment setup

In this section, we elaborate on the experimental setups of the
four RQs defined in Section 1.

3.2.1. The risk evaluation formulas in SRR (RQ1)
Countless research has been conducted to investigate various

REFs in the last four decades (Wong et al., 2016; de Souza et al.,
2016). However, most of these studies proposed a novel REF
or contrasted existing REFs empirically or theoretically in terms
of its/their fault localization effectiveness, that is, analyzing the
REF’s capability to ranking the faulty statement(s) at the top of
the list (Naish et al., 2011; Xie et al., 2013a; Yoo et al., 2017).

For example, some novel REFs have emerged in the past ten
years, including Crosstab (Wong et al., 2011) and DStar (Wong
et al., 2013) that were developed by Wong et al. in 2011 and 2013,
respectively. The former constructs a crosstab for each statement
in PUT to determine their suspiciousness by calculating the chi-
square statistic and the coefficient of contingency, while the
latter exponentially strengthens the function of NCF in spectrum
information, making it more effective in fault localization than
any other techniques compared with it according to the authors.
Yoo created 30 novel REFs via genetic programming in 2012 (Yoo,
2012), experimental results proved that GP-evolved REFs can
consistently outperform many of the human-designed REFs. Xie
et al. evaluated these 30 GP-evolved REFs using the theoretical
framework in Xie et al. (2013a) and discovered three REFs with
strong human competitiveness: GP02, GP03, and GP19 (Xie et al.,
2013b).

Apart from developing new REFs, some researchers have ded-
icated their effort to investigating a corpus of existing REFs.
For example, Naish et al. investigated more than 30 REFs and

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

b
b

i

e
e
s
2
j
N
f
e
t

p
i
e
p
T

3

o
p
2
g
m
d
e
t
s

Table 6
35 risk evaluation formulas.
Name Formula expression Name Formula expression

Naish1 (Naish et al., 2011)
{
−1 if NCF < NF
NS − NCS if NCF = NF

Naish2 (Naish et al., 2011) NCF −
NCS
NS+1

Jaccard (Chen et al., 2002) NCF
NF +NCS

Anderberg (Naish et al., 2011) NCF
NCF +2(NUF +NCS)

Sørensen–Dice (Naish et al.,
2011)

2NCF
2NCF +NUF +NCS

Dice (Naish et al., 2011) 2NCF
NF +NCS

Goodman (Naish et al., 2011) 2NCF −NUF −NCS
2NCF +NUF +NCS

Tarantula (Jones and Harrold,
2005)

NCF
NF

NCF
NF

+
NCS
NS

qe (Lee et al., 2009) NCF
NC

CBI Inc. (Liblit et al., 2005) NCF
NC

- NF
N

Wong2 (Wong et al., 2007) NCF − NCS Hamann (Naish et al., 2011) NCF +NUS−NUF −NCS
N

Simple Matching (Naish et al.,
2011)

NCF +NUS
N Sokal (Naish et al., 2011) 2(NCF +NUS)

2(NCF +NUS)+NUF +NCS

Rogers & Tanimoto Naish et al.
(2011)

NCF +NUS
NCF +NUS+2(NUF +NCS)

Hamming etc. (Naish et al.,
2011)

NCF + NUS

Euclid (Naish et al., 2011)
√
NCF + NUS Wong1 (Wong et al., 2007) NCF

Russel & Rao (Naish et al.,
2011)

NCF
N Binary (Naish et al., 2011)

{
0 if NCF<NF
1 if NCF=NF

Scott (Naish et al., 2011) 4NCF NUS−4NUF NCS−(NUF −NCS)2

(2NCF +NUF +NCS)(2NUS+NUF +NCS)
Rogot1 (Naish et al., 2011) 1

2 (
NCF

2NCF +NUF +NCS
+

NUS
2NUS+NUF +NCS

)

Kulczynski2 (Naish et al., 2011) 1
2 (

NCF
NF

+
NCF
NC

) Ochiai (Abreu et al., 2006) NCF√
NF NC

M2 (Naish et al., 2011) NCF
NCF +NUS+2(NUF +NCS)

Ample2 (Naish et al., 2011) NCF
NF

−
NCS
NS

Wong3 (Wong et al., 2007) NCF − h,where h=

⎧⎨⎩NCS if NCS≤2
2+0.1(NCS−2) if 2<NCS≤10
2.8+0.001(NCS−10) if NCS>10

Arithmetic mean (Naish et al.,
2011)

2NCF NUS−2NUF NCS
NCNU+NF NS

Cohen (Naish et al., 2011) 2NCF NUS−2NUF NCS
NCNS+NF NU

Fleiss (Naish et al., 2011) 4NCF NUS−4NUF NCS−(NUF −NCS)2

(2NCF +NUF +NCS)+(2NUS+NUF +NCS)

Crosstab (Wong et al., 2011)a χ2
=

(NCF −ECF)2

ECF
+

(NCS−ECS)2

ECS
+

(NUF −EUF)2

EUF
+

(NUS−EUS)2

EUS
DStar (Wong et al., 2013)b N∗

CF
NUF +NCS

GP02 (Yoo, 2012) 2(NCF +
√
NUS) +

√
NCS GP03 (Yoo, 2012)

√
|N2

CF −
√
NCS |

GP19 (Yoo, 2012) NCF
√

|NCS − NCF + NUF − NUS |

aCrosstab will first calculate ϕ for each statement to quantify its association with failed and successful executions, and then use ϕ to determine if a statement should
e assigned χ2 , −χ2 or 0. Please refer to Wong et al. (2011) for more details about this REF.
Considering the preference for DStar in many other studies (such as Pearson et al., 2017; Arrieta et al., 2018), we set * = 2, the most thoroughly-explored value
n our experiments.
3

i
g
c
L
s
a
S
t
a
T
v
w

3
f

p
t
f
a
2
t
d
t
P

xtracted several equivalence relations guided by the strictest
quivalence definition (i.e., only REFs that generate the same
tatement ranking lists are considered equivalent) (Naish et al.,
011). Xie et al. first excluded some REFs that are not intuitively
ustified in the context of SBFL, then selected 30 REFs from
aish et al.’s research to contrast them using a novel theoretical
ramework (Xie et al., 2013a). According to Naish et al. and Xie
t al.’s conclusions, 30 REFs are divided into six equivalent groups
hat include 22 REFs and eight individual REFs.

To the best of our knowledge, no empirical study has been
ublished to investigate how different REFs, which produce rank-
ng lists that represent failed test cases, affect the clustering
ffectiveness in SRR-based parallel debugging. To fill this gap, we
erform the first empirical study on the capability of 35 REFs in
able 6 to representing failed test cases.

.2.2. The number of faults in PUT (RQ2)
The effect of the number of faults contained in a program

n fault localization effectiveness has been investigated by many
rior researchers (DiGiuseppe and Jones, 2011b, 2015; Jones et al.,
002), but how NOF affects the clustering stage in parallel debug-
ing is still poorly explored. Although it is intuitive to assume that
ore bugs will lead to more failures, making it more difficult to
ivide them, we do not know whether this is reasonable from an
mpirical standpoint. To that purpose, we observe and compare
he effectiveness of clustering in 2-bug, 3-bug, 4-bug, and 5-bug
cenarios.
7

.2.3. The fault type in PUT (RQ3)
Programmers may introduce various types of faults when cod-

ng due to unintentional mistakes or misunderstandings of pro-
ramming logistics, as a result, FT is typically unpredictable be-
ause of the randomness and uncertainty of onsite programming.
amraoui and Nakajima categorized common faults in multi-fault
cenarios into several types, including data-flow dependent faults
nd control-dependent faults (Lamraoui and Nakajima, 2016).
imilar to these, we define assignment faults and predicate faults,
wo types of faults that are most likely to occur in programming
s our research objects, and accordingly generate a series of
ypeA faulty versions with only assignment faults, TypeP faulty
ersions with only predicate faults, and TypeH faulty versions
ith both two types of faults to observe clustering effectiveness.

.2.4. The number of successful test cases paired with one individual
ailed test case (RQ4)

While clustering failed test cases via SRR, many prior studies
aired one failed test case with all successful test cases and input
hem into an REF to produce a ranking list representing this
ailed test case, without explaining why all successful test cases
re employed here. In fact, many studies including (Sun et al.,
016; Mottaghi and Keyvanpour, 2017) have managed to utilize
est case selection or test suite reduction techniques to lower
ebugging expenses, some recent studies have also investigated
he impact of test suites on fault localization (Lei et al., 2018;
erez et al., 2017). For example, as Fu et al. argued, if the number

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

i
m
c
a
n
e
g
t
c
e
r

3

c
t
i

c
b
D

C
a
F
a
r

J

a
F

3

g
o
w
e
g
5
a
t
i
e
r
t
i
c
a
(
i
h
t

Table 7
Four scenarios in the pair of cases-based metric.
Notation Results of failure indexing

In the generated cluster In the oracle cluster

SS Same Same
SD Same Difference
DS Difference Same
DD Difference Difference

of successful test cases is too large, the noise will be introduced
into the fault localization process (Fu et al., 2017). However, these
works only evaluated the effect of the number of test cases on
fault localization, not fault isolation built upon SRR. We try to cut
the scale of successful test cases utilized in SRR by pairing 100%,
80%, 60%, 40%, and 20% of successful test cases with one failed
test case, respectively, to monitor if the clustering effectiveness
declines as NSP1F falls.

3.3. Metrics

Two classes of metrics, external metrics (Wu et al., 2009) and
nternal metrics (Tan et al., 2016), are typically implemented to
easure the effectiveness of clustering techniques. The former
ontrast clustering results with the oracle, while the latter ex-
mine inherent properties of clustering results, such as compact-
ess and separation, without using an off-the-shelf baseline (Xie
t al., 2017). While clustering failed test cases in parallel debug-
ing, ideal outputs should exhibit linkages between each failed
est case in TS and each fault in PUT, which is available in our
ontrolled experiments. Therefore, we employ four widely-used
xternal metrics, JC, FMI, PR and RR, to evaluate the experimental
esults.

.3.1. Pair of cases-based metric
The pair of cases-based metric refers to compare the indexing

onsistency of each pair of failed test cases in the generated clus-
er with the oracle cluster. Four scenarios in which are depicted
n Table 7.

Assuming that there are n failed test cases that need to be
lustered, a total of C2

n pairs will be examined in the pair of cases-
ased metric. The numbers of pairs that fall into SS, SD, DS, and
D categories are denoted as XSS , XSD, XDS , and XDD, respectively.
The above notations can be incorporated into the Jaccard

oefficient (JC) and the Fowlkes and Mallows Index (FMI), which
re defined in Formula (4) and Formula (5), respectively. JC and
MI are used to determine the similarity between the gener-
ted cluster and the oracle cluster, for measuring the clustering
esults (Huang and Flynt, 2018).

C =
XSS

XSS + XSD + XDS
(4)

FMI =

√
XSS

XSS + XSD
×

XSS

XSS + XDS
(5)

It can be proved that the intervals of JC and FMI are both [0,
1], and that the larger the value in this range, the more effective
clustering is. A simple example is given below to describe JC and
FMI.

As shown in Fig. 3, six failed test cases (A, B, C , D, E, and F)
are indexed divergently in the generated cluster and the oracle
cluster. Among the C2

6 = 15 pairs of cases (A−B, A−C , A−D, . . .,
E − F), A − B and C − F are in the same cluster in the generated
cluster, and also in the same cluster in the oracle cluster, which
meets the scenario SS in Table 7, therefore, XSS = 2. Similarly,
we can get XSD = 4, XDS = 5, and XDD = 4. Incorporating these
notations into Formulas (4) and Formula (5), JC and FMI will be
set to 0.182 and 0.309, respectively.
8

Fig. 3. SS pairs in the generated cluster and the oracle cluster.

Table 8
Four scenarios in the single case-based metric.
Notation Results of failure indexing

In the generated cluster In the oracle cluster

TP Positive Positive
FP Positive Negative
TN Negative Negative
FN Negative Positive

3.3.2. Single case-based metric
The single case-based metric refers to compare the classifica-

tion result of each failed test case in the generated cluster with
the oracle cluster. Four scenarios in which are depicted in Table 8.

The numbers of failed test cases that fall into TP, FP, TN, and
FN categories are denoted as XTP , XFP , XTN , and XFN , respectively.

The above notations can be incorporated into the Precision
Rate (PR) and the Recall Rate (RR), which are defined in For-
mula (6) and Formula (7), respectively, for measuring the clus-
tering results.

PR =
XTP

XTP + XFP
(6)

RR =
XTP

XTP + XFN
(7)

It can be proved that the intervals of PR and RR are both [0,
1], and that the larger the value in this range, the more effective
clustering is.

As shown in Fig. 3, failed test cases D and E are labeled as
positive, and the remaining four ones are labeled as negative in
the oracle cluster. But in the generated cluster, failed test cases
C and F are wrongly labeled as positive, thus the value of XFP
can be determined as 2. Similarly, we can get XTP = 1, XTN = 2,
nd XFN = 1. Incorporating these notations into Formulas (6) and
ormula (7), PR and RR will be set to 0.333 and 0.5, respectively.

.3.3. The virtual mapping problem
It should be noted that the different permutations between

enerated clusters and oracle clusters will result in different
utputs of the external metrics, and the diversity of permutations
ill significantly grow with the number of faults increases. For
xample, in a 2-bug scenario, the permutations between two
enerated clusters and two oracle clusters are A2

2 = 2, while in a
-bug scenario, the permutations between five generated clusters
nd five oracle clusters are A5

5 = 120. Such diversity of permuta-
ions does not exist in practical parallel debugging, it only occurs
n the contrast between the output and the oracle. In other words,
ach developer will be allocated to a fault-focused TS and will be
esponsible for localizing the corresponding fault independently,
hus regardless of how many potential permutations exist, there
s only one real combination of generated clusters and oracle
lusters. As a result, the permutation between generated clusters
nd oracle clusters in experiments is the combination in practice
we call this problem the virtual mapping problem). In our exper-
ments, we extract faulty versions in which the number of faults
as been precisely estimated, i.e., the number of faults equals
he number of generated clusters, to perform analyses. For each

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

t
S
s

4
(

a
s
o
i
t

i
l

e
s
d
e
i
i
l
f
t
t
a
i

l
s
V

t

Table 9
12 groups of risk evaluation formulas with the same capability to representing failed test cases.
Name REFs

Group1 Naish2
Group2 Jaccard, Anderberg, Sørensen–Dice, Dice, Goodman, M2, Naish1, DStar
Group3 Tarantula, qe, CBI Inc, Kulczynski2, Ochiai
Group4 Wong2, Hamann, Simple Matching, Sokal, Rogers & Tanimoto, Hamming etc., Euclid
Group5 Wong1, Binary, Russel & Rao
Group6 Scott, Rogot1
Group7 Ample2, Arithmetic Mean, Cohen, Crosstab
Group8 Wong3
Group9 Fleiss
Group10 GP02
Group11 GP03
Group12 GP19
of these faulty versions, we enumerate all feasible permutations
followed by picking the optimal one based on the value of JC, FMI,
PR, or RR for evaluation, because which permutation reflects the
real mapping relations is unknown.

4. Result and analysis

We conduct extensive controlled experiments according to
he research questions in Section 1 and predesigned setups in
ection 3. Experimental results and analyses are given in this
ection.

.1. The capability of different REFs to representing failed test cases
RQ1)

We reorganize 35 REFs in Table 6 into 12 disjoint groups,
s shown in Table 9, because we find that some REFs have the
ame performance in representing failed test cases (details are
mitted to conserve space). Only one REF (in bold) in each group
s selected for analyses since its capability to representing failed
est cases is equal to the others in the group it belongs to.

For each of faulty versions, we implement the workflow shown
n Fig. 1 to estimate the number of clusters based on the ranking
ists produced by an REF. There are three scenarios in this stage:

• Under: The estimated number of clusters is fewer than NOF
(i.e., k < r).

• Equal: The estimated number of clusters is equal to NOF
(i.e., k == r).

• Over: The estimated number of clusters exceeds NOF (i.e.,
k > r).

If the estimated number of clusters k in a faulty version is
qual to NOF r , we send this faulty version to the next clustering
tep. Otherwise, if k is not equal to r , this faulty version is
iscarded. In a real multi-fault localization scenario, even if the
stimated number of clusters k and the number of faults r are not
dentical, the whole process can also be continued: if k > r , local-
zation can be stopped when all failures disappear, and if k < r ,
ocalization can be carried out more than one iteration. This paper
ocuses on clustering rather than the following localization stage,
he evaluation of clustering effectiveness is the main purpose,
hus we do not take ‘‘k ̸= r ’’ scenarios into account. The filtering,
s well as the follow-up virtual mapping process, are illustrated
n Fig. 4.

When estimating the number of clusters based on the ranking
ists produced by an REF R, we denote the numbers of faulty ver-
ions that fall into the Under , Equal, and Over categories as V R

under ,
R
equal, and V R

over , respectively. For an REF R, a greater V R
equal, as well

as a fewer V R
under and a fewer V R

over , partly indicate that R captures
he execution features of failed test cases more effectively thus
 e

9

Fig. 4. The virtual mapping process (with checking whether the estimated
number of clusters equals NOF).

Fig. 5. V R
under , V

R
equal , and V R

over of 12 groups of REFs.

can better represent them. V R
under , V

R
equal, and V R

over of each group
of REFs on all faulty versions are shown in Fig. 5.10

It can be seen that based on the ranking lists produced by
Group12, NOF is accurately estimated on 25% of the 1060 faulty
versions (V Group12

equal = 265). Besides, based on the ranking lists
produced by Group7, the estimated numbers of clusters on 65%
of faulty versions exceed the NOF (V Group7

over = 687), implying this
REF is over-representing in modeling failed test cases (i.e., too

10 The longer the green band, the more faulty versions’ NOF can be accurately
stimated based on the ranking lists produced by the corresponding REF.

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

t
c

(
i
c
c
t
m

S

w
m
i
F
w
S
t
v
o
.
t
a

m
r

Table 10
Contrast of the capability of 12 groups of REFs to representing failed test cases.
a
t
1
e

c
T
s

Table 11
The values of Sum_Metric of 12 groups of REFs.

sensitive to model failures to a nicety). Based on the ranking lists
produced by Group4, the estimated numbers of clusters in 85% of
faulty versions are fewer than the NOF (V Group4

under = 896), indicating
hat this REF appears under-representing in modeling failed test
ases (i.e., too deficient to model failures distinguishably).
We select only faulty versions that fall into the Equal category

i.e., satisfy the ‘‘k == r ’’ criteria) for clustering, as illustrated
n Fig. 4. The capability of an REF R to representing failed test
ases can be assessed by two indicators: the value of V R

equal and the
lustering effectiveness on these V R

equal faulty versions. We define
he Sum_MetricRM , as shown in Formula (8), to incorporate the two
etrics into a single value.

um_MetricRM =

VR
equal∑
i

Mi (8)

here R represents the REF, Mi is the value of the clustering
etric M (M takes FMI, JC, PR or RR) on the ith faulty version. For

nstance, if we want to evaluate Group12 from the standpoint of
MI (i.e., R takes Group12 and M takes FMI) using Formula (8),
e can first get the value of V Group12

equal (265), and then calculate
um_MetricGroup12FMI by adding up FMI1, FMI2, . . . , FMI265. Specifically,
he values of FMI on the first, the second, . . . , and the 265th

ersion are 0.78, 0.77, . . . , and 1.00, respectively, thus the value
f Sum_MetricGroup12FMI can be determined by adding up 0.78, 0.77,
. . , and 1.00, that is, 221.33 in Table 11. Obviously, the greater
he V R

equal value of the REF R, the more possibility it has to obtain
greater Sum_MetricRM .
For two REFs, R1 and R2, if Sum_MetricR1M > Sum_MetricR2M , it

eans that according to the metric M , R1 is better than R2 in

epresenting failed test cases. We contrast 12 groups of REFs

10
ccording to their Sum_MetricRM in Table 10,11 as well as list
he Sum_MetricRM values in Table 11. It can be seen that Group
2 outperforms the other 11 groups of REFs regardless of being
valuated by FMI, JC, PR, or RR.
Now we can draw the conclusion of RQ1: Group12 is highly

ompetitive across all REFs when representing failed test cases.
he list of 12 groups of REFs ranked by their capability to repre-
enting failed test cases is as follows:

Group12 > Group11 > Group5 > Group9 > Group6 >

Group2 > Group1 > Group7 > Group10 > Group8 >

Group3 > Group4

4.2. The impact of NOF contained in PUT on the clustering effective-
ness (RQ2)

Similar to definitions depicted in Section 4.1, we first use VN
equal

(N = 2, 3, 4, 5) to denote how many N-bug faulty versions’ NOF
can be accurately estimated by a specific REF, then define and
employ the Sum_MetricNM , as illustrated in Formula (9), to observe
the clustering effectiveness on these VN

equal versions.

Sum_MetricNM =

VN
equal∑
i

Mi (9)

The clustering effectiveness is visualized using box-and-
whisker plots in terms of upper quartile, lower quartile, median,
and mean, where each vertical column’s color reflects the value
of VN

equal (a darker color indicates a greater value of VN
equal). The

color is regulated by adjusting the opacity using the procedures
below.12

• Step-1: Set the color of each vertical column to black (RGB:
0, 0, 0).

• Step-2: Count the values of VN
equal in N-bug scenarios (N =

2, 3, 4, 5), and set the maximum value to MAX , as defined
in Formula (10).

MAX = max
{
VN
equal

}
(N = 2, 3, 4, 5) (10)

• Step 3: Calculate the opacity OpacityN of each vertical col-
umn, as defined in Formula (11).

OpacityN =
VN
equal

MAX
(N = 2, 3, 4, 5) (11)

11 In the cell of [R1 , R2], ✓, ✓, ✓, ✓indicate that REF R1 is better than REF R2
in terms of FMI, JC, PR, or RR, respectively.
12 This color setting scheme is also applicable to Section 4.3.

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

5

b
c

t

(
N
a
o

S

n
s

d
a
m

d
R
m

(
t
w
b
o

S

4
0
o
‘
c

Fig. 6. The contrast of clustering effectiveness among 2-bug, 3-bug, 4-bug, and
-bug scenarios.

The clustering effectiveness in 2-bug, 3-bug, 4-bug, and 5-
ug scenarios is shown in Fig. 6.13 From this, we can draw the
onclusions of RQ2:

(1) As NOF increases, the similarities (FMI, JC) between gener-
ated clusters and oracle clusters decrease.

(2) As NOF increases, the Recall Rate (RR) falls, while the
Precision Rate (PR) changes little.

(3) As NOF increases, the dispersion of FMI, JC, and RR narrows.
(4) Based on the ranking lists produced by Group12, a greater

value of VN
equal tends to be obtained if N equals 3 (Group3,

Group5, Group8, and Group10 also support this conclu-
sion).

The list of NOFs ranked by the clustering effectiveness under
hem is as follows:

2-bug > 3-bug > 4-bug > 5-bug

4.3. The impact of FT contained in PUT on the clustering effectiveness
(RQ3)

Similar to definitions depicted in Section 4.1, we first use V T
equal

T takes A, P, H) to denote how many TypeT faulty versions’
OF can be accurately estimated by a specific REF, then define
nd employ the Sum_MetricTM , as illustrated in Formula (12), to
bserve the clustering effectiveness on these V T

equal versions.

um_MetricTM =

V T
equal∑
i

Mi (12)

The clustering effectiveness in TypeA, TypeP, and TypeH sce-
arios is shown in Fig. 7.14 From this, we can draw the conclu-
ions of RQ3:

13 Due to space limitations, we only display the clustering results of Group12,
espite the fact that the clustering results of the other 11 groups of REFs
ll confirm the conclusions in Section 4.2. Please refer to the supplementary
aterial for a complete list of conclusions.

14 Due to space limitations, we only display the clustering results of Group10,
espite the fact that the clustering results of many of the other 11 groups of
EFs confirm the conclusions in Section 4.3. Please refer to the supplementary
aterial for a complete list of conclusions.
11
Fig. 7. The contrast of clustering effectiveness among TypeA, TypeP, and TypeH
scenarios.

(1) Compared with TypeA and TypeH, better clustering effec-
tiveness is easier to obtain in the TypeP scenario concern-
ing FMI, JC, and RR. No significant differences in terms of
PR among the three scenarios are observed.

(2) The values of V T
equal and T have no evident relations.

The list of FTs ranked by the clustering effectiveness under
them is as follows:

TypeP > TypeA ≈ TypeH

4.4. The impact of NSP1F on the clustering effectiveness (RQ4)

Unlike the first three RQs in which we pair one failed test case
with all (i.e., 100%) successful test cases, we randomly sample X%
X = 80, 60, 40, 20) of successful test cases to pair with one failed
est case in this RQ. Similar to definitions depicted in Section 4.1,
e first use V X

equal to denote how many faulty versions’ NOF can
e accurately estimated by a specific REF when the proportion
f successful test cases is set to X%, then define and employ

the Sum_MetricXM , as illustrated in Formula (13), to observe the
clustering effectiveness on these V X

equal versions.

um_MetricXM =

VX
equal∑
i

Mi (13)

The clustering effectiveness when X is set to 100, 80, 60,
0, 20 is shown in Table 12.15 For example, ‘‘FMI-mean-80%:
.82’’ implies that when pairing one failed test case with 80%
f successful test cases, the mean of the values of FMI on 255
‘k == r ’’ faulty versions is 0.82. From this, we can draw the
onclusions of RQ4:

(1) Lowering NSP1F (to as low as 20%) has no evident effect on
clustering effectiveness.

(2) The effect of X on the value of V X
equal is neither evident nor

decisive.

15 Due to space limitations, we only display the clustering results of Group11,
despite the fact that the clustering results of the other 11 groups of REFs
all confirm the conclusions in Section 4.4. Please refer to the supplementary
material for a complete list of conclusions.

https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering
https://github.com/yisongy/failureClustering

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

t

c
d
d
c
o

5

f

5

s
f
b
b
p
t
f
t
P
o
t
o
o
f
m

c
a
f
t
i

a
b

c

c
(
o
w
c
l

d

t

g
5
R
r

Table 12
The contrast of clustering effectiveness among various NSP1Fs.

The list of NSP1Fs ranked by clustering effectiveness under
hem is as follows:

100% ≈ 80% ≈ 60% ≈ 40% ≈ 20%

This conclusion indicates that 100% clustering effectiveness
an be achieved with only 20% of successful test cases. When
evelopers use SRR to clustering failed test cases in parallel
ebugging, they can feel free to cut the scale of successful test
ases for lower debugging costs without worrying about the loss
f effectiveness.

. Discussion

Some interesting topics related to our empirical study are
urther discussed in this section.

.1. An in-depth analysis of clustering failed test cases

Given a TS and a PUT, the numbers of failed test cases and
uccessful test cases will be immediately determined. If multiple
aults are contained in the PUT, all existing failed test cases might
e caused by different faults, that is, each failed test case will
e linked to its root cause(s). The more the faults, the lower
roportion of failed test cases caused by each fault to all failed
est cases.16 However, the intuition of designing risk evaluation
ormulas in SBFL is to assign higher suspiciousness to statements
hat are covered by more failed test cases (Tang et al., 2017;
ang et al., 2015), which would be disturbed by the presence
f multiple faults, and the degree of disturbance magnifies as
he number of faults increases. Zheng et al. presented a similar
pinion in Zheng et al. (2018), they claimed when there is only
ne faulty statement, it is more likely to be covered by more
ailing executions, whereas the failing executions are diluted by
ultiple faults so less accurate results are obtained.
To tackle this challenge, it is natural to categorize failed test

ases according to their root cause(s), in other words, build link-
ges between failed test cases and faults. As a classic technique
or unsupervised data grouping, clustering is typically employed
o accomplish this failure indexing process, with the goal of fault
solation.

We use Fig. 8 to simulate the effectiveness of fault isolation. In
single-fault scenario, the proportion of failed test cases caused
y the unique fault F1 (denoted as valid failed test cases for F1)

to all failed test cases is 100%, that is to say, all failed test cases
fed into a risk evaluation formula for F1, thus SBFL techniques are

16 We discuss this problem under the condition of the number of failed test
ases has been determined.
 t

12
Fig. 8. Fault localization effectiveness with and without clustering in a
multi-fault scenario.

easier to push the statement that contains F1 towards the top of
the ranking list, as shown in Fig. 8(a). In a multi-fault scenario,
assume there are r bugs, Fi (i = 1, 2, . . . , r) in a PUT, n failed test
ases in a TS, and the number of failed test cases caused by Fi
denoted as valid failed test cases for Fi) is |Fi|. The proportion
f failed test cases linked to Fi to all failed test cases is |Fi|/n,
hich is ordinarily less than 100%. Furthermore, if all failed test
ases are utilized in SBFL without being refined, the process of
ocalizing a single fault, Fi, will be interrupted by failed test cases
caused by the other faults (denoted as redundant failed test cases
for Fi). Consequently, SBFL techniques’ capability is diminished
since linkages between a single fault and its responsible failed
test cases have been diluted (simulated by the opacity of faulty
statements in Fig. 8(b)), potentially lowering the rankings of
statements that contain faults.

After all failed test cases are divided into several disjoint fault-
focused clusters, only failed test cases triggered by Fi, as well as
successful test cases, will be fed into a risk evaluation formula
to localize Fi. That is to say, when ideal clustering results are
elivered, the proportion of valid failed test cases for Fi to all

failed test cases regains 100%, since redundant failed test cases
for Fi have been indexed to their own root cause, which enables
the position of the statement that contains Fi to be higher in the
corresponding ranking list, as shown in Fig. 8(c).

5.2. Revisit of V R
over and V R

under

When evaluating the capability of REFs to representing failed
est cases, we consider only faulty versions that fall into the Equal
category, in other words, if the NOF of a faulty version is not
accurately estimated based on an REF R (i.e., falls into the Under
or the Over category), this faulty version will be discarded, and
thus will not be dedicated to R’s capability to clustering failed test
cases. It is obvious that the larger the value of V R

equal (that is, the
lower the values of V R

over and V R
under), the greater the possibility

that R will be highly competitive.
Nonetheless, the same values of V R

over and V R
under should not be

treated equally since they can reflect different deviations from
the NOF. For example, assume that the NOFs of ten 5-bug faulty
versions are being estimated based on the ranking lists produced
by two REFs, R1 and R2, respectively, we can immediately get
ri (i = 1, 2, . . . , 10) are all equal to 5. If the estimate results
enerated by R1 are kR1i (i = 1, 2, . . . , 10), which are 9, 9, 8, 9,
, 5, 1, 1, 2, 2, respectively, and the estimate results generated by
2 are kR2i (i = 1, 2, . . . , 10), which are 6, 6, 7, 6, 5, 5, 3, 3, 4, 4,
espectively. According to the preceding definitions in Section 4.1,
he values of V R1 and V R2 are equal to 4, the values of V R1
over over equal

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

D

w
v
v

i

H
f

p

1
t
T
t
h
i
e

g
t
f
t
c
v
w
c
i

v
N

f
v
t
j
a

t
p
w
o
p
f
v

v
F
m
r

S

w

F
2
w
F
d
G
>
d

5
f

o

Table 13
The values of Deviation of 12 groups of REF.

and V R2
equal are equal to 2, and the values of V R1

under and V R2
under are

equal to 4. Although both R1 and R2 estimate the NOF on eight
faulty versions inaccurately, it is visible that R2 delivers a closer
result, implying R2 has a stronger capability to representing failed
test cases to some extent. We define two metrics, DeviationR

over in
Formula (14) and DeviationR

under in Formula (15), to quantify this
type of difference among all REFs.

DeviationR
over =

1
V R
over

×

VR
over∑
i

(ki − ri) (14)

eviationR
under =

1
V R
under

×

VR
under∑
i

(ri − ki) (15)

here ki is the estimated number of clusters on the ith faulty
ersion, and ri represents the NOF contained in the ith faulty
ersion.
Using Formula (14) and Formula (15) to contrast R1 and R2

n the aforementioned example, we can get DeviationR1
over = 3.75,

DeviationR1
under = 3.5; DeviationR2

over = 1.25, DeviationR2
under = 1.5.

ence, the difference between R1 and R2 hidden behind the k ̸= r
aulty versions is captured and quantified.

We revisit the values of V R
over and V R

under for 12 groups of REFs
resented in Fig. 5, as shown in Table 13.
It can be seen that the value of DeviationR

over of Group11 is
.26, indicating when the estimated number of clusters exceeds
he NOF, Group11 has the lowest degree of over-representing .
he value of DeviationR

under of Group1 is 1.57, indicating when
he estimated number of clusters is fewer than the NOF, Group1
as the lowest degree of under-representing . The mean of Group5
s 1.87, indicating when the estimated number of clusters is not
qual to the NOF, Group5 has the lowest deviation.
Notice that such analyses are non-trivial for parallel debug-

ing. In real multi-fault localization scenarios, it is expected that
he predicted number of faults k is identical to the number of
aults r . If such ideal situations cannot be attained, the smaller
he deviation, the lower the time and labor cost. Specifically, one
annot judge whether the prediction result is correct since the
alue of r is unknown in practice. Thus, k fault-focused clusters
ill be directly input to the following localization stage. If k ex-
eeds r , k developers will be employed to locate r faults, resulting
n waste of human labor (k - r developers are redundant). On the
contrary, if k is less than r , more than one (⌈r/k⌉) iteration of
debugging is needed, resulting in waste of time.

5.3. A heuristic perspective to contrast REFs

We further discuss the relation between the virtual mapping
problem and the evaluation of clustering effectiveness. Assume
13
Fig. 9. The values of Sum_VoteR of 12 groups of REFs.

that REF R is utilized to represent failed test cases in a faulty
ersion. If the estimated number of clusters k is equal to the
OF r , there will be Ar

k permutations between generated clusters
and oracle clusters. The four metrics, FMI, JC, PR, and RR, will
appear different values on different permutations. If the highest
values of the four metrics all appear on the same permutation,
it means that the four metrics can easily achieve a consensus,
which indicates that the ranking lists produced by R represent
ailed test cases distinguishably. On the contrary, if the highest
alues of the four metrics are dispersed onto different permuta-
ions, divergences among these four metrics are revealed, which
ust demonstrates that the ranking lists produced by R are too
nalogous to be divided.
We regard the evaluation of four metrics for all permuta-

ions as a voting process, in which each metric votes for the
ermutation with its highest value. For example, a permutation
ill get four votes if the highest values of all four metrics occur
n it. Obviously, in the aforementioned r-bug faulty version, Ar

k
ermutations will each be assigned a value of votes. This r-bug
aulty version’s votes will be referred to as the highest value of
otes among Ar

k permutations.
We design the Sum_VoteR metric to count the votes of faulty

ersions that satisfy the ‘‘k == r ’’ criteria for each REF R in
ig. 5, as shown in Formula (16). We believe that the Sum_VoteR
etric reflects the capability of the risk evaluation formula R to

epresenting failed test cases from a heuristic perspective.

um_VoteR =

VR
equal∑
i

votei (16)

here votei is the value of votes of the ith faulty version.
The values of Sum_VoteR of 12 groups of REFs are given in

ig. 9. For instance, on 265 ‘‘k == r ’’ faulty versions of Group12,
04, 31, and 30 of them get 4, 3, and 2 votes, respectively,
e can immediately obtain Sum_VoteGroup12 = 969 according to
ormula (16). The direction of the circular arrow in Fig. 9 in-
icates the ranking of Sum_VoteR values of 12 groups of REFs:
roup12 > Group11 > Group5 > Group9 > Group6 > Group2
Group1 > Group7 > Group10 > Group8 > Group3 > Group4,

ouble-confirming the conclusion of RQ1.

.4. Why is it easier to obtain better clustering effectiveness in TypeP
aulty versions?

The conclusions in Section 4.3 reveal that when a program has
nly predicate faults, the overall clustering effectiveness is higher

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

t
f
o
t
o
(
t

d
t
m
S
c
d
t
t
p
d
e
c
d
m
i
h
f
f

5

c
f
d
t
c
2
r
c
s
s

i
v
t
e
o
d
s

6

h
c
c
b
m
m
r
c
l
a
o

c
t

t
a
o
i
w
v
b
a
s
r
b
m

f
m
t
l

7

t
a
d
e
c
a
g
s
p
e
(
i
c
t
c
t
t
D
f
t
i
a
t
m
f

b
s
t
m
b
t
T
m
i
f
t
o
t
s
a
s
a
a
l

han when it has only assignment faults and both two types of
aults coexist. Take Group10 as an example (Fig. 7), the number
f ‘‘k == r ’’ faulty versions of TypeP is 25.0% and 28.6% greater
han that of TypeA and TypeH, respectively, according to their
pacity. TypeP scenarios also have better clustering effectiveness
the mean and median of FMI, JC, and RR) than the other two fault
ypes.

In SRR-based failure clustering, a ranking list, which is pro-
uced by a risk evaluation formula, serves as a proxy for a failed
est case. The basis of generating a ranking list is spectrum infor-
ation, while the latter originates from coverage. In other words,
RR-based failure clustering heavily depends on the failed test
ases’ execution paths on the PUT. For failed test cases caused by
ifferent faults, the more distinctive execution paths they have,
he more distinguishable ranking lists an REF can generate, and
he easier they are to be indexed. A TypeP faulty version has only
redicate faults, which involve reversing the if -else predicate,
eleting the else statement, or modifying the decision condition,
tc., according to the definition in Section 3.1.1. All of the three
lasses could cause unwanted code to be executed, resulting in a
ifferent trace. Thus, failed test cases in TypeP faulty versions are
ore likely to appear diverse coverage, which will be beneficial to

solate these predicate faults. However, this assistance, on the one
and, does not exist when a program contains only assignment
ault, on the other hand, is diminished when the two types of
aults coexist.

.5. The function of successful test cases in SRR

In Section 3.2.4, we assume that the function of successful test
ases in SRR-based failure clustering is to assist risk evaluation
ormulas in generating ranking lists (some REFs will lose their
efinition without being fed into successful test cases), that is
o say, they serve as complements in failure indexing. The con-
lusions in Section 4.4 reveal that lowering NSP1F (to as low as
0%) indeed has no evident effect on clustering effectiveness. As a
esult, while performing SRR-based failure clustering, developers
an reduce debugging costs by pairing only a portion of the
uccessful test cases with one failed test case since too many
uccessful test cases will not help represent failed test cases.
Even though failed test cases have gotten a lot of attention

n testing and debugging, successful test cases can also play a
ital role. For example, metamorphic testing enables successful
est cases to expose failures via metamorphic relations (Chen
t al., 2020; Xie et al., 2013c). We only illustrate the redundancy
f successful test cases in SRR-based failure clustering, without
enying their significance in localization, testing, or the other
oftware quality assurance activities.

. Threats to validity

Similar to previous empirical studies on parallel debugging, a
ard-clustering strategy is used in this paper to divide failed test
ases, that is, a failed test case can only be categorized into one
luster. However, in real-world debugging processes, the relations
etween faults and failures are quite complex since several faults
ight trigger the same failure (i.e., one failed test case links to
ultiple faults). Therefore, the clustering effectiveness will be

educed since the inherent conflict between the property of hard-
lustering techniques and the one-to-many or many-to-many
inkages. Nonetheless, the reliability of our conclusions is not
ffected by this threat since we contrast different variables based
n the same clustering technique.
In addition, to build the virtual linkages between generated

lusters and oracle clusters, we filter out faulty versions with

he estimated number of clusters not equal to the NOF. Although

14
his strategy guarantees the availability of clustering results, it
lso causes various variables in each RQ to be contrasted based
n different numbers of faulty versions. This threat seems to
ntroduce additional uncertainties for the experiments, however,
e believe that (1) how many faulty versions are selected by
arious variables in each RQ (i.e., 12 groups of REFs in RQ1, 2-
ug, 3-bug, 4-bug, and 5-bug scenarios in RQ2, TypeA, TypeP,
nd TypeH scenarios in RQ3, 100%, 80%, 60%, 40%, and 20% of
uccessful test cases in RQ4) reflect these variables’ capability to
epresenting failed test cases, and (2) the distinction in diverse
enchmarks avoids the bias caused by a standard dataset, which
akes the conclusions more universal.
Although we collected four datasets with varied scales and

unctions, they are all written in C. Besides, when utilizing the
utation-based strategy to inject faults into the original program,

he number of predefined mutation operators is limited, which
owers the diversity of faulty versions to some extent.

. Related work

Clustering failed test cases into various fault-focused groups
hat target different faults is not a newborn method. As early
s 2003, Podgurski et al. observed that open-source software
evelopers had received a large number of bug reports from
nd-users every day, but many of these bug reports are actually
aused by the same fault although they have distinct trigger paths
nd different anomalous behaviors. To that end, they suggested
rouping together failures with the same root cause based on
upervised and unsupervised pattern classification, which avoids
otentially unwanted and redundant debugging labor (Podgurski
t al., 2003). Considering the suggestions of Podgurski et al.
2003), Jones et al. proposed two parallel debugging techniques
n Jones et al. (2007). Specifically, they first divided failed test
ases into several disjoint clusters based on similarities, and
hen separately combined these clusters with all successful test
ases to generate specialized test suites that are expected to
arget different faults. These fault-focused TSs are finally assigned
o several developers for localizing multiple faults in parallel.
iGiuseppe and Jones then conducted an empirical study to con-
irm the necessity of clustering failed test cases and to explore
he influence of the presence of multiple faults on fault local-
zation. They pointed out clustering failed test cases is necessary
nd beneficial despite the fact that this process may incur addi-
ional computational costs, since their findings demonstrated that
ulti-fault indeed had a negligible effect on the effectiveness of

ault localization (DiGiuseppe and Jones, 2011b).
Högerle et al. first quoted an important opinion concluded

y Jones et al. in Jones et al. (2007), that is, parallelization can
peed up debugging significantly, even if the derived parallel
asks are conducted sequentially, and then pointed out that the
ethod of dividing failed test cases should be carefully chosen
ecause it will have a significant impact on the division effec-
iveness through large-scale experiments (Högerle et al., 2014).
he effectiveness of parallel debugging will be directly deter-
ined by the outcomes of the clustering process. Zakari and Lee

nvestigated commonly-used parallel debugging techniques and
ound that most research (1) employed CVR as failure proximity
o represent failed test cases, and (2) used Euclidean, Jaccard,
r Hamming distance to measure the similarities between failed
est cases. They first coined the term problematic approach to de-
cribe debugging approaches that adopted the above techniques,
nd then conducted an empirical study on the effectiveness of
everal problematic approaches adopting the K-means clustering
lgorithm. Their results showed that clustering built upon CVR
nd Euclidean distance reduced the effectiveness of multi-fault
ocalization (Zakari and Lee, 2019).

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

i
s
i
i
D
t
t
l
R
S
f
2
i
p
t
d
t
s
a
i
p
s
t
c
K
p
W
n
W

n
f
e
b
n
f
e
w
a
g
o
t
d
o
w
t
o
t
f
h
l
a
i
l
2
s
c
i
e

c
l
o
l
a

Liu et al. conducted systematic research on failure proximity
n Liu et al. (2008) and Liu and Han (2006), in which they
ummarized or proposed six representative failure proximities,
.e., Failure-based, Stack Trace-based, Code Coverage-based, Pred-
cate Evaluation-based, Dynamic Slicing-based, and Statistical
ebugging-based. The CVR utilized in most studies is similar to
he above-mentioned Trace-proximity, which has been proven
o be less effective in clustering failed test cases. To tackle this
imitation, Gao and Wong employed SRR, which is similar to
ank-proximity in Liu et al. (2008), to represent failed test cases.
pecifically, (1) they paired each failed test case with all success-
ul test cases and input them into an REF, Crosstab (Wong et al.,
011), to generate a ranking list that represents the correspond-
ng failed test case. (2) They stated that the clustering algorithm’s
erformance highly depends on the distance metric, thus revised
he original Kendall tau distance based on the premise that
iscordant pairs of more suspicious statements contribute more
o the distance between two ranking lists. (3) To tackle the long-
tanding problem of estimating the number of clusters, as well
s relieving the uncertainty introduced by randomly generating
nitial centroids, an approach of selecting initial medoids while
redicting the number of clusters was presented inspired by prior
tudies (Yager and Filev, 1994; Chiu, 1994). (4) They claimed
hat their initial medoids selection approach reduced the high
omputational costs to a large extent compared with the original
-medoids clustering algorithm, due to the latter examines all
ossible combinations of data points as initial medoids. Gao and
ong integrated the above four innovations and developed a
ovel technique for localizing multiple faults in parallel (Gao and
ong, 2019).
In addition, some researchers have developed a series of

ovel parallel debugging strategies by integrating techniques
rom other domains into fault localization. For example, Zakari
t al. proposed a fault localization technique that is suited for
oth single-fault and multi-fault scenarios based on the complex
etwork theory (FLCN), where developers can localize multiple
aults at the same time in a single diagnosis ranking list (Zakari
t al., 2018). In another study, they adopted the divisive net-
ork community algorithm to cluster failed test cases, as well
s employed a weighting and selecting mechanism to prioritize
enerated fault-focused communities (Zakari et al., 2019). Based
n one-fault-at-a-time via OPTICS (Ordering Points To Identify
he Clustering Structure) clustering, Wu et al. proposed to (1)
ivide failed test cases in each iteration and calculate the density
f each cluster, (2) combine the failed test cases in the cluster
ith the highest density value with all successful test cases
o form a new test suite, and (3) localize a single fault based
n the ranking list produced by the new test suite, iterating
hese steps until all bugs are fixed. Based on their findings, they
urther concluded that using the clustering algorithm with the
ighest accuracy can achieve the best performance of multi-fault
ocalization (Wu et al., 2020). Inspired by the multiple-fault-at-
-time strategy, Zheng et al. converted fault localization tasks
nto search problems and proposed a fast software multi-fault
ocalization framework using genetic algorithms (Zheng et al.,
018). Pei et al. introduced the dynamic random testing (DRT)
trategy and proposed distance-based DRT, which vectorized test
ases and divided them into disjoint subdomains using distance
nformation from inputs and a specific clustering algorithm (Pei
t al., 2021).
There are also some researchers who carried out empirical

omparisons of different techniques in the field of multi-fault
ocalization. For instance, Gao et al. contrasted the effectiveness
f 22 machine learning algorithms typically used in multi-fault
ocalization and found that random forests, BP neural networks,

nd logit boost machine learning models based on ensemble

15
learning performed well (Gao et al., 2018). Huang et al. first
created 12 types of setup by combining 6 REFs and 2 widely-used
clustering algorithms, and then conducted empirical research
in multi-fault scenarios using CVR. Their experimental results
showed that Wong1 paired with K-means outperformed the other
combinations (Huang et al., 2013). Zakari et al. conducted a
systematic literature review on classic parallel debugging tech-
niques (Zakari et al., 2020). They investigated off-the-shelf studies
and categorized them into three prominent types of strategy,
one-fault-at-a-time debugging, parallel debugging, and multiple-
fault-at-a-time debugging. Among them, they pointed out parallel
debugging alleviated fault interferences through clustering failed
test cases. However, many studies such as Jones et al. (2007)
and Huang et al. (2013) claimed these existing strategies were
insufficient for isolating faults as well as listed some challenges
related to clustering effectiveness in parallel debugging, including
the method of representing failed test cases, the initial set of
fault-focused clusters, the clustering algorithm, and the distance
metric.

8. Conclusion and future work

We extract and analyze four essential factors, i.e., the risk
evaluation formula that produces ranking lists, the number of
faults in a program, the fault types, and the number of successful
test cases paired with one individual failed test case, to inves-
tigate how these variables affect clustering effectiveness. Four
research questions are presented in this paper, the corresponding
controlled experiments show that: (1) GP19 is highly compet-
itive across all REFs, thus we recommend that researchers or
developers who adopt SRR for parallel debugging use GP19 to
represent failed test cases; (2) clustering effectiveness decreases
as NOF increases, indicating that a greater number of faults re-
duces the effectiveness not only in fault localization but also
in fault isolation; (3) higher clustering effectiveness is easier to
achieve when a program contains only predicate faults, which
points out the challenge of isolating assignment faults; and (4)
clustering effectiveness remains when NSP1F is reduced to 20%,
future researchers and developers are suggested to cut the scale
of successful test cases while using SRR for a lower debugging
expense.

In the future, we plan to further explore the internal mecha-
nisms of risk evaluation formulas to representing failed test cases,
followed by proposing a novel REF for the representation of failed
test cases. We also consider investigating the four factors that
may influence clustering effectiveness with larger datasets and
broader experiment setups, as well as introducing new evaluation
metrics.

CRediT authorship contribution statement

Yi Song: Methodology, Software, Draft preparation, Empirical
evaluation. Xiaoyuan Xie: Methodology, Conceptualization, Su-
pervision. Quanming Liu: Software, Data curation. Xihao Zhang:
Software, Validation. Xi Wu: Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

A

P
a
t
c
p
U

A

o

R

A

A

A

A

A

C

C

C

C

d

D

D

D

D

D

F

G

G

G

H

H

cknowledgments

This work was partially supported by the National Key R&D
rogram of China under the grant number 2020AAA0107803,
nd the National Natural Science Foundation of China under
he grant numbers 61972289 and 61832009. And the numerical
alculations in this work have been partially done on the su-
ercomputing system in the Supercomputing Center of Wuhan
niversity.

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.jss.2022.111452.

eferences

breu, R., Zoeteweij, P., Van Gemund, A.J., 2006. An evaluation of similarity coef-
ficients for software fault localization. In: 2006 12th Pacific Rim International
Symposium on Dependable Computing (PRDC’06). IEEE, pp. 39–46.

n, G., Yoon, J., Yoo, S., 2021. Searching for multi-fault programs in defects4j.
In: International Symposium on Search Based Software Engineering. Springer,
pp. 153–158.

ndrews, J.H., Briand, L.C., Labiche, Y., 2005. Is mutation an appropriate tool for
testing experiments? In: Proceedings of the 27th International Conference
on Software Engineering. pp. 402–411.

ndrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S., 2006. Using mutation analysis
for assessing and comparing testing coverage criteria. IEEE Trans. Softw. Eng.
32 (8), 608–624.

rrieta, A., Segura, S., Markiegi, U., Sagardui, G., Etxeberria, L., 2018. Spectrum-
based fault localization in software product lines. Inf. Softw. Technol. 100,
18–31.

ao, H.L., Jiang, S.J., 2017. Multiple-fault localization based on chameleon
clustering. Tien Tzu Hsueh Pao/Acta Electron. Sin. 45 (2), 394–400.

hen, T.Y., Cheung, S.C., Yiu, S.M., 2020. Metamorphic testing: a new approach
for generating next test cases. arXiv preprint arXiv:2002.12543.

hen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E., 2002. Pinpoint: Prob-
lem determination in large, dynamic internet services. In: Proceedings
International Conference on Dependable Systems and Networks. IEEE, pp.
595–604.

hiu, S.L., 1994. Fuzzy model identification based on cluster estimation. J. Intell.
Fuzzy Systems 2 (3), 267–278.

e Souza, H.A., Chaim, M.L., Kon, F., 2016. Spectrum-based software fault
localization: A survey of techniques, advances, and challenges. arXiv preprint
arXiv:1607.04347.

iGiuseppe, N., Jones, J.A., 2011a. Fault interaction and its repercussions. In: 2011
27th IEEE International Conference on Software Maintenance (ICSM). IEEE,
pp. 3–12.

iGiuseppe, N., Jones, J.A., 2011b. On the influence of multiple faults on
coverage-based fault localization. In: Proceedings of the 2011 International
Symposium on Software Testing and Analysis. pp. 210–220.

iGiuseppe, N., Jones, J.A., 2012. Concept-based failure clustering. In: Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering. pp. 1–4.

iGiuseppe, N., Jones, J.A., 2015. Fault density, fault types, and spectra-based
fault localization. Empir. Softw. Eng. 20 (4), 928–967.

o, H., Rothermel, G., 2006. On the use of mutation faults in empirical
assessments of test case prioritization techniques. IEEE Trans. Softw. Eng.
32 (9), 733–752.

u, W., Yu, H., Fan, G., Ji, X., Pei, X., 2017. A test suite reduction approach
to improving the effectiveness of fault localization. In: 2017 International
Conference on Software Analysis, Testing and Evolution (SATE). IEEE, pp.
10–19.

ao, M., Li, P., Chen, C., Jiang, Y., 2018. Research on software multiple fault local-
ization method based on machine learning. In: MATEC Web of Conferences,
Vol. 232. EDP Sciences, p. 01060.

ao, R., Wong, W.E., 2019. MSeer—An advanced technique for locating multiple
bugs in parallel. IEEE Trans. Softw. Eng. 45 (3), 301–318.

olagha, M., Lehnhoff, C., Pretschner, A., Ilmberger, H., 2019. Failure clustering
without coverage. In: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. pp. 134–145.

arrold, M.J., Rothermel, G., Sayre, K., Wu, R., Yi, L., 2000. An empirical
investigation of the relationship between spectra differences and regression
faults. Softw. Test. Verif. Reliab. 10 (3), 171–194.

ögerle, W., Steimann, F., Frenkel, M., 2014. More debugging in parallel. In: 2014
IEEE 25th International Symposium on Software Reliability Engineering. IEEE,
pp. 133–143.
16
Huang, Y., Flynt, A., 2018. Exploration of common clustering methods and the
behavior of certain agreement indices. Ball State Undergrad. Math. Exch. 12
(1), 35–50.

Huang, Y., Wu, J., Feng, Y., Chen, Z., Zhao, Z., 2013. An empirical study on
clustering for isolating bugs in fault localization. In: 2013 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE,
pp. 138–143.

Jeffrey, D., Gupta, N., Gupta, R., 2008. Fault localization using value replacement.
In: Proceedings of the 2008 International Symposium on Software Testing
and Analysis. pp. 167–178.

Jones, J.A., Bowring, J.F., Harrold, M.J., 2007. Debugging in parallel. In: Proceed-
ings of the 2007 International Symposium on Software Testing and Analysis.
pp. 16–26.

Jones, J.A., Harrold, M.J., 2005. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. pp. 273–282.

Jones, J.A., Harrold, M.J., Stasko, J., 2002. Visualization of test information to
assist fault localization. In: Proceedings of the 24th International Conference
on Software Engineering. ICSE 2002. IEEE, pp. 467–477.

Just, R., Jalali, D., Ernst, M.D., 2014a. Defects4J: A database of existing faults
to enable controlled testing studies for Java programs. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis. pp.
437–440.

Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G., 2014b. Are
mutants a valid substitute for real faults in software testing? In: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. pp. 654–665.

Kaufman, L., Rousseeuw, P.J., 2009. Finding Groups in Data: An Introduction to
Cluster Analysis, Vol. 344. John Wiley & Sons.

Keller, F., Grunske, L., Heiden, S., Filieri, A., van Hoorn, A., Lo, D., 2017. A critical
evaluation of spectrum-based fault localization techniques on a large-scale
software system. In: 2017 IEEE International Conference on Software Quality,
Reliability and Security (QRS). IEEE, pp. 114–125.

Kendall, M., Gibbons, D., 1990. Rank Correlation Methods. Oxford University
Press.

Lamraoui, S.-M., Nakajima, S., 2016. A formula-based approach for automatic
fault localization of multi-fault programs. J. Inf. Process. 24 (1), 88–98.

Lee, H.J., Naish, L., Ramamohanarao, K., 2009. Study of the relationship of
bug consistency with respect to performance of spectra metrics. In: 2009
2nd IEEE International Conference on Computer Science and Information
Technology. IEEE, pp. 501–508.

Lei, Y., Sun, C., Mao, X., Su, Z., 2018. How test suites impact fault localisation
starting from the size. IET Softw. 12 (3), 190–205.

Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I., 2005. Scalable statistical
bug isolation. Acm Sigplan Notices 40 (6), 15–26.

Liu, C., Fei, L., Yan, X., Han, J., Midkiff, S.P., 2006. Statistical debugging: A
hypothesis testing-based approach. IEEE Trans. Softw. Eng. 32 (10), 831–848.

Liu, C., Han, J., 2006. Failure proximity: a fault localization-based approach.
In: Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. pp. 46–56.

Liu, C., Zhang, X., Han, J., 2008. A systematic study of failure proximity. IEEE
Trans. Softw. Eng. 34 (6), 826–843.

Mottaghi, N., Keyvanpour, M.R., 2017. Test suite reduction using data mining
techniques: A review article. In: 2017 International Symposium on Computer
Science and Software Engineering Conference (CSSE). IEEE, pp. 61–66.

Naish, L., Lee, H.J., Ramamohanarao, K., 2011. A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol. (TOSEM) 20 (3), 1–32.

Pang, Y., Xue, X., Namin, A.S., 2015. Debugging in parallel or sequential: An
empirical study. J. Softw. 10 (5), 566–576.

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., Harman, M., 2019. Mu-
tation testing advances: an analysis and survey. In: Advances in Computers,
Vol. 112. Elsevier, pp. 275–378.

Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M.D., Pang, D.,
Keller, B., 2017. Evaluating and improving fault localization. In: 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE).
IEEE, pp. 609–620.

Pei, H., Yin, B., Xie, M., Cai, K.-Y., 2021. Dynamic random testing with test case
clustering and distance-based parameter adjustment. Inf. Softw. Technol.
131, 106470.

Perez, A., Abreu, R., van Deursen, A., 2017. A test-suite diagnosability metric
for spectrum-based fault localization approaches. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, pp. 654–664.

Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., Wang, B.,
2003. Automated support for classifying software failure reports. In: 25th
International Conference on Software Engineering, 2003. Proceedings.. IEEE,
pp. 465–475.

Pradel, M., Sen, K., 2018. DeepBugs: A learning approach to name-based bug
detection. PACMPL 2 (OOPSLA), 147:1–147:25.

Reps, T., Ball, T., Das, M., Larus, J., 1997. The use of program profiling for software
maintenance with applications to the year 2000 problem. In: Software
Engineering—Esec/Fse’97. Springer, pp. 432–449.

https://doi.org/10.1016/j.jss.2022.111452
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb4
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb4
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb4
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb4
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb4
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb6
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb6
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb6
http://arxiv.org/abs/2002.12543
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb9
http://arxiv.org/abs/1607.04347
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb14
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb14
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb14
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb17
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb17
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb17
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb17
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb17
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb37
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb37
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb37
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb40
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb40
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb40
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb40
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb40
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb42
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb42
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb42
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb46
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb46
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb46
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb46
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb46
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb48
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb48
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb48
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb49

Y. Song, X. Xie, Q. Liu et al. The Journal of Systems & Software 193 (2022) 111452

2

S

S

T

T

W

W

W

W

W

W

W

W

W

X

X

X

X

X
X

X

X

X

Y

Y

Y

018. The software infrastructure repository. [Online]. Available: https://sir.csc.
ncsu.edu/portal/index.php, accessed on: Nov. 2018. URL https://sir.csc.ncsu.
edu/portal/index.php.

teimann, F., Frenkel, M., 2012. Improving coverage-based localization of multi-
ple faults using algorithms from integer linear programming. In: 2012 IEEE
23rd International Symposium on Software Reliability Engineering. IEEE, pp.
121–130.

un, X., Peng, X., Li, B., Li, B., Wen, W., 2016. IPSETFUL: an iterative process
of selecting test cases for effective fault localization by exploring concept
lattice of program spectra. Front. Comput. Sci. 10 (5), 812–831.

an, P.-N., Steinbach, M., Kumar, V., 2016. Introduction to Data Mining. Pearson
Education India.

ang, C.M., Chan, W., Yu, Y.T., Zhang, Z., 2017. Accuracy graphs of
spectrum-based fault localization formulas. IEEE Trans. Reliab. 66 (2),
403–424.

ang, Y., Gao, R., Chen, Z., Wong, W.E., Luo, B., 2014. WAS: A weighted
attribute-based strategy for cluster test selection. J. Syst. Softw. 98, 44–58.

ang, X., Jiang, S., Gao, P., Lu, K., Lili, B., Ju, X., Zhang, Y., 2020. Fuzzy C-means
clustering based multi-fault localization. Chinese J. Comput. 43 (2), 206–232.

ang, Q., Wu, S., Li, M., 2008. Software defect prediction. J. Softw. 19 (7),
1565–1580.

ong, W.E., Debroy, V., Gao, R., Li, Y., 2013. The dstar method for effective
software fault localization. IEEE Trans. Reliab. 63 (1), 290–308.

ong, W.E., Debroy, V., Xu, D., 2011. Towards better fault localization: A
crosstab-based statistical approach. IEEE Trans. Syst. Man Cybern. C 42 (3),
378–396.

ong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F., 2016. A survey on software
fault localization. IEEE Trans. Softw. Eng. 42 (8), 707–740.

ong, W.E., Qi, Y., Zhao, L., Cai, K.-Y., 2007. Effective fault localization using code
coverage. In: 31st Annual International Computer Software and Applications
Conference (COMPSAC 2007), Vol. 1. IEEE, pp. 449–456.

u, Y.-H., Li, Z., Liu, Y., Chen, X., 2020. FATOC: Bug isolation based multi-
fault localization by using OPTICS clustering. J. Comput. Sci. Tech. 35 (5),
979–998.

u, J., Xiong, H., Chen, J., 2009. Adapting the right measures for k-means
clustering. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. pp. 877–886.

iaobo, Y., Liu, B., Shihai, W., 2018. An analysis on the negative effect
of multiple-faults for spectrum-based fault localization. IEEE Access 7,
2327–2347.

ie, X., Chen, T.Y., Kuo, F.-C., Xu, B., 2013a. A theoretical analysis of the risk
evaluation formulas for spectrum-based fault localization. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 22 (4), 1–40.

ie, X., Kuo, F.-C., Chen, T.Y., Yoo, S., Harman, M., 2013b. Provably optimal and
human-competitive results in sbse for spectrum based fault localisation. In:
International Symposium on Search Based Software Engineering. Springer,
pp. 224–238.

ie, X., Wong, W.E., Chen, T.Y., Xu, B., 2013c. Metamorphic slice: An application
in spectrum-based fault localization. Inf. Softw. Technol. 55 (5), 866–879.

ie, X., Xu, B., 2021. Essential Spectrum-based Fault Localization. Springer.
ie, J., Zhou, Y., Wang, M., Jiang, W., 2017. New criteria for evaluating the validity

of clustering. CAAI Trans. Intell. Syst. 12 (6), 873–882.
u, X., Debroy, V., Eric Wong, W., Guo, D., 2011. Ties within fault localization

rankings: Exposing and addressing the problem. Int. J. Softw. Eng. Knowl.
Eng. 21 (06), 803–827.

uan, J., Martinez, M., Demarco, F., Clement, M., Marcote, S.L., Durieux, T.,
Le Berre, D., Monperrus, M., 2016. Nopol: Automatic repair of conditional
statement bugs in java programs. IEEE Trans. Softw. Eng. 43 (1), 34–55.

ue, X., Namin, A.S., 2013. How significant is the effect of fault interactions
on coverage-based fault localizations? In: 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. IEEE, pp.
113–122.

ager, R.R., Filev, D.P., 1994. Approximate clustering via the mountain method.
IEEE Trans. Syst. Man Cybern. 24 (8), 1279–1284.

oo, S., 2012. Evolving human competitive spectra-based fault localisation tech-
niques. In: International Symposium on Search Based Software Engineering.
Springer, pp. 244–258.

oo, S., Xie, X., Kuo, F.-C., Chen, T.Y., Harman, M., 2017. Human competitiveness
of genetic programming in spectrum-based fault localisation: Theoretical and
empirical analysis. ACM Trans. Softw. Eng. Methodol. (TOSEM) 26 (1), 1–30.
17
Yu, Z., Bai, C., Cai, K.-Y., 2015. Does the failing test execute a single or multiple
faults? An approach to classifying failing tests. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 1. IEEE, pp. 924–935.

Zakari, A., Lee, S.P., 2019. Parallel debugging: An investigative study. J. Softw.:
Evol. Process 31 (11), e2178.

Zakari, A., Lee, S.P., Abreu, R., Ahmed, B.H., Rasheed, R.A., 2020. Multiple fault
localization of software programs: A systematic literature review. Inf. Softw.
Technol. 124, 106312.

Zakari, A., Lee, S.P., Chong, C.Y., 2018. Simultaneous localization of software faults
based on complex network theory. IEEE Access 6, 23990–24002.

Zakari, A., Lee, S.P., Hashem, I.A.T., 2019. A community-based fault isolation
approach for effective simultaneous localization of faults. IEEE Access 7,
50012–50030.

Zheng, Y., Wang, Z., Fan, X., Chen, X., Yang, Z., 2018. Localizing multiple software
faults based on evolution algorithm. J. Syst. Softw. 139, 107–123.

Yi Song received B.Sc. and M.Phil. degrees in Computer
Science from China Three Gorges University, China
in 2018 and 2020, respectively. He is currently a
Ph.D. candidate in School of Computer Science, Wuhan
University, China, under the supervision of professor
Xiaoyuan Xie. His research interests mainly include
software testing, debugging, program analysis, and
search-based software engineering.

Xiaoyuan Xie received B.Sc. and M.Phil. degrees in
Computer Science from Southeast University, China
in 2005 and 2007, respectively, and received Ph.D.
degree in Computer Science from Swinburne University
of Technology, Australia in 2012. She is currently a
professor in School of Computer Science, Wuhan Uni-
versity, China. Her research interests include software
analysis, testing, debugging, and search-based software
engineering.

Quanming Liu received B.Sc. degree from Northeast-
ern University at Qinhuangdao, China in 2021. He
is currently studying for a master degree in School
of Computer Science, Wuhan University, China. His
research interests include software testing and fault
localization.

Xihao Zhang is currently an undergraduate student of
software engineering in School of Computer Science,
Wuhan University, China, since 2018. His research
interests include software debugging, software fault
localization and machine learning.

Xi Wu is currently an undergraduate student of
software engineering in School of Computer Sci-
ence, Wuhan University, China, since 2018. Her re-
search interests include fault localization and artificial
intelligence.

https://sir.csc.ncsu.edu/portal/index.php
https://sir.csc.ncsu.edu/portal/index.php
https://sir.csc.ncsu.edu/portal/index.php
https://sir.csc.ncsu.edu/portal/index.php
https://sir.csc.ncsu.edu/portal/index.php
https://sir.csc.ncsu.edu/portal/index.php
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb52
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb52
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb52
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb52
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb52
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb53
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb53
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb53
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb55
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb55
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb55
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb59
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb59
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb59
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb59
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb59
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb62
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb62
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb62
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb62
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb62
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb67
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb67
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb67
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb68
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb69
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb69
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb69
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb70
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb70
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb70
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb70
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb70
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb71
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb71
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb71
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb71
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb71
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb72
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb72
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb72
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb72
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb72
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb72
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb72
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb73
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb73
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb73
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb74
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb74
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb74
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb74
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb74
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb75
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb75
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb75
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb75
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb75
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb76
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb76
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb76
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb76
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb76
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb77
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb77
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb77
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb78
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb78
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb78
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb78
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb78
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb79
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb79
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb79
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb80
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb80
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb80
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb80
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb80
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb81
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb81
http://refhub.elsevier.com/S0164-1212(22)00145-5/sb81

	A comprehensive empirical investigation on failure clustering in parallel debugging
	Introduction
	Background
	Why clustering?
	Statement ranking representation
	Motivating example

	Experimental setup
	The generation of faulty versions
	SIR programs
	Defects4J programs

	Experiment setup
	The risk evaluation formulas in SRR (RQ1)
	The number of faults in PUT (RQ2)
	The fault type in PUT (RQ3)
	The number of successful test cases paired with one individual failed test case (RQ4)

	Metrics
	Pair of cases-based metric
	Single case-based metric
	The virtual mapping problem

	Result and analysis
	The capability of different REFs to representing failed test cases (RQ1)
	The impact of NOF contained in PUT on the clustering effectiveness (RQ2)
	The impact of FT contained in PUT on the clustering effectiveness (RQ3)
	The impact of NSP1F on the clustering effectiveness (RQ4)

	Discussion
	An in-depth analysis of clustering failed test cases
	Revisit of VoverR and VunderR
	A heuristic perspective to contrast REFs
	Why is it easier to obtain better clustering effectiveness in TypeP faulty versions?
	The function of successful test cases in SRR

	Threats to validity
	Related work
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

