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ABSTRACT
Failures with different root causes can greatly disrupt multi-fault
localization, therefore, categorizing failures into distinct groups
according to the culprit fault is highly important. In such a failure
indexing task, the crux lies in the failure proximity, which comprises
two points, i.e., how to effectively represent failures (e.g., extract
the signature of failures) and how to properly measure the distance
between those proxies for failures. Existing research has proposed
a variety of failure proximities. The majority of them extract signa-
tures of failures from execution coverage or suspiciousness ranking
lists, and accordingly employ the Euclid or the Kendall tau distances,
etc. However, such strategies may not properly reflect the essential
characteristics of failures, thus resulting in unsatisfactory effective-
ness. In this paper, we propose a new failure proximity, namely,
the program variable-based failure proximity, and further present a
novel failure indexing approach, ReClues. Specifically, ReClues uti-
lizes the run-time values of program variables to represent failures,
and designs a set of rules to measure the similarity between them.
Experimental results demonstrate the competitiveness of ReClues:
it can achieve 44.12% and 27.59% improvements in faults number
estimation, as well as 47.56% and 26.27% improvements in clustering
effectiveness, compared with the state-of-the-art technique in this
field, in simulated and real-world environments, respectively.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Programs in practice usually contain multiple bugs [16, 23, 34, 65],
which may reduce the effectiveness of current fault localization
techniques [20]. To alleviate this issue [12, 13], researchers proposed
to employ parallel debugging1, where all failures2 are divided into
several disjoint groups according to their root causes [14, 26, 54,
60, 86]. This division3 process aims to achieve two goals, namely,
1) having the number of generated groups equal to the number
of faults (i.e., correct faults number estimation), and 2) failed test
cases in the same group (referred to as fault-focused group) are
triggered by the same fault, and vice versa (i.e., high clustering effec-
tiveness). As such, each developer can be allocated to a fault-focused
group and thus localize the corresponding fault independently and
simultaneously.

The effectiveness of the failure division (a.k.a failure indexing)
is the core to determine the cost and the performance of parallel
debugging. In case of over-division (i.e., the predicted number of
faults exceeds the truth), redundant developers will be expropriated
for the debugging, resulting in labor waste. And in case of under-
division (i.e., the predicted number of faults is less than the truth),
more than one iteration of debugging is needed. In fact, prior studies
have proven that the higher the accuracy of clustering, the better
the performance of parallel debugging, and vice versa [43, 74].

1In parallel debugging, people generally consider faults that do not interfere with one
another.
2Also known as failed test case in the context of dynamic testing. We use these two
terms interchangeably hereafter.
3In the current field of parallel debugging, clustering is typically utilized for such
division. Thus we use these two terms interchangeably hereafter.
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Figure 1: Drawbacks of the SOTA technique

It is well-recognized that there are three essential factors in
failure indexing [47]: the fingerprinting function, the distance met-
ric, and the clustering algorithm. The fingerprinting function is
responsible for failure representation (e.g., by extracting signatures
of failures), which produces the proxy for failed test cases. The
distance metric measures the similarity between proxies for fail-
ures, which relies on the form of the signature extracted by the
fingerprinting function. The clustering algorithm divides failures
according to culprit root causes incorporating the distance informa-
tion. Therefore, the core of failure indexing actually lies in defining
a proper fingerprinting function and designing a tailored distance
metric (these two components are called failure proximity), and
then a proper clustering algorithm can be selected to fit the failure
proximity [30].

A large number of researchers have dedicated their effort to
exploring this topic [24, 45, 47, 48, 63], yielding a variety of failure
proximities. Among them, the code coverage (CC)-based and the sta-
tistical debugging (SD)-based failure proximities are the most wide-
spread and commonly-used, previous studies have demonstrated
their advancement [9, 67, 85]. The CC-based strategy employs cov-
erage information of binary indicators or execution frequency as
its fingerprinting function, and typically uses the Euclid distance
as its distance metric. And the SD-based strategy uses the coverage
information to further produce a suspiciousness ranking list of
program entities as the proxy for a failure by incorporating fault
localization techniques, which are generally SBFL (Spectrum-based
Fault Localization) ones at the statement granularity [33, 76, 77],
and typically employs the Kendall tau distance [39], the Euclid dis-
tance, etc. to measure the similarity between the proxies [29, 39].
However, both of the two strategies have drawbacks, as shown in
Figure 1. Specifically, when the multiple failures with distinct root
causes present to have an identical coverage profile, neither the
SD-based nor the CC-based strategy can effectively distinguish the
failures, because both of these two strategies essentially rely on
program coverage. Unfortunately, such an identical coverage phe-
nomenon has been demonstrated to be very common in practice by
a prestigious study [47]. Therefore, neither the CC nor the SD strat-
egy is sufficient for serving as an effective failure representation
(we use a motivating example to show this in Section 3).

In fact, one of the biggest bottlenecks of using coverage to rep-
resent failures can be partly described by the PIE (Propagation,
Infection, and Execution) model [64]. The PIE model has demon-
strated that a failure can be detected only if the fault4 infects the
program’s internal state. However, with the coverage information
only, it is very hard to explore the faulty internal state in depth dur-
ing the program execution, because being covered is a necessary
4In this paper, we follow the practice of general fault localization to consider the
non-omission fault.

but not sufficient condition for triggering a failure. Thus, cov-
erage cannot extract the signature of failures in deep insight. Based
on this intuition, we conjecture that program internal dataflows
can be a finer-grained failure representation when using coverage
gives rise to unsatisfactory effectiveness5, because variables’ values
during the program execution are one reasonable candidate to em-
body program internal states. In this paper, we propose the program
variable-based failure proximity, which represents failures by using
run-time program variable information (i.e., the run-time values
of program variables, deeper insight into exploring programs’
internal state than coverage), and measures the distance based
on the characteristics of such variable information. According to
the intuition of the program variable-based failure proximity, we
present ReClues, a novel failure indexing approach to Represent
and Cluster failed test cases. For the fingerprinting function, Re-
Clues first uses an SBFL technique to determine several riskiest
program statements as breakpoints, and then collects run-time
program variable information at the preset breakpoints during exe-
cuting a failed test case. For the distance metric, ReClues designs a
two-level framework to measure the similarity between a pair of
program variable information that serves as proxies for failures.

In the evaluation, we obtain four projects from SIR [17], 𝑓 𝑙𝑒𝑥 ,
𝑔𝑟𝑒𝑝 , 𝑔𝑧𝑖𝑝 , and 𝑠𝑒𝑑 , followed by injecting mutated faults into clean
programs, to generate 600 simulated faulty versions, and also gather
100 real-world faulty versions from five projects in Defects4J [35],
𝐶ℎ𝑎𝑟𝑡 ,𝐶𝑙𝑜𝑠𝑢𝑟𝑒 , 𝐿𝑎𝑛𝑔,𝑀𝑎𝑡ℎ, and𝑇𝑖𝑚𝑒 . Experimental results demon-
strate that ReClues exceeds the state-of-the-art failure indexing
technique significantly, with increases of 44.12% and 27.59% re-
garding faults number estimation, as well as increases of 47.56%
and 26.27% regarding clustering effectiveness, in simulated and
real-world environments, respectively.

This paper makes the following contributions:
• A novel type of failure proximity. We propose the pro-
gram variable-based failure proximity, which uses run-time
variable information as the signature of failures. As far as
we know, this is the first time that program variables serve
as proxies for failures in failure indexing.

• A promising failure indexing approach. Following the
essence of the program variable-based failure proximity, we
present ReClues, a novel failure indexing approach compris-
ing a new fingerprinting function and a tailored distance
metric.

• A comprehensive evaluation.We use a diversity of bench-
marks and select convincing metrics for the experiments,
revealing the competitiveness of ReClues.

• A public repository.We release the experimental data and
code at https://github.com/yisongy/ReClues_Repo, to facili-
tate any intention of replication or reuse.

2 BACKGROUND
2.1 Parallel Debugging
Many studies show that fault localization will be more difficult if
multiple faults co-exist in a program [13, 38, 66, 81, 83]. A main
reason lies in the phenomenon of the presence of a fault to cause the

5This conjecture has been verified by the experiments in Section 6.
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ineffectiveness of the fault-localization technique to locate another
fault [11, 13, 72]. To tackle this challenge, a natural idea is to local-
ize each fault in an independent environment. Thus, researchers
and developers often draw on the idea of parallel debugging, i.e.,
partitioning failures into groups that target a single fault each [11].
And parallelization can also promote the debugging efficiency. As
discussed in Section 1, high-quality parallel debugging needs rea-
sonable failure indexing, where the failure proximity, i.e., failure
representation and distance measurement, is essential. Here we
introduce these two parts of CC and SD-based failure proximities.

2.2 Failure Representation
In software testing and debugging, test cases are typically in the
form of program inputs, while failed test cases are those that pro-
duce unexpected outputs. Directly available information of a failed
test case only contains two parts, the input (i.e, data fed to the pro-
gram) and the label (i.e., failed). It is quite difficult to index failures
with only these two resources, since they are poorly distinguishable.

During running a test case, diverse run-time information is gen-
erated, which provides failure representationwith powerful support
to alleviate the mentioned threat. Based on that, many fingerprint-
ing functions have been proposed. For example:

• Fingerprinting function of the CC-based failure prox-
imity. The CC-based failure proximity represents a failure
as a numerical vector of program coverage. Specifically, it
creates a vector with a length equal to the number of pro-
gram executable entities (which are typically statements),
and sets the value of the 𝑖th element as 1 or the execution
frequency if a failed test case covers the 𝑖th statement during
the execution, and 0 otherwise [15, 27, 28].

• Fingerprinting function of the SD-based failure prox-
imity. The SD-based failure proximity represents a failure as
a suspiciousness ranking list of program entities. Specifically,
given a failed test case and successful test cases, it employs a
fault localization technique (generally an SBFL one) to calcu-
late the risk of program entities being faulty, and produces a
ranking list in which all entities are descendingly ordered
by their risk values [24, 32, 45].

Though these two failure proximities are recognized as the most
widespread and promising strategies to date, the basic resource on
which they rely is still code coverage, whose limitation has been
mentioned in the references [26, 41, 49] and will be further revealed
in Section 3. A more effective fingerprinting function in deeper
insight remains lacking.

2.3 Distance Measurement
Defining a reasonable fingerprinting function is the first step for
failure proximity. Once failures are translated into the correspond-
ing proxies, properly measuring the distance among the proxies
is of great importance. Designing such a distance metric is not an
independent process, since it must match the characteristics of the
proxies. For example:

• Distancemetric of theCC-based Failure proximity.The
CC-based failure proximity typically utilizes the Euclid dis-
tance, etc., since it represents a failure as a program code

coverage vector, and the Euclid distance is a simple way to
measure the distance between such numerical vectors.

• Distancemetric of the SD-based Failure proximity.The
SD-based failure proximity typically utilizes the Kendall tau
distance [39], the Jaccard distance, the Euclid distance, etc.,
since it represents a failure as a ranking list, which can be
suitably handled by these distance metrics.

It can be seen that the design of the distance metric is highly de-
pendent on the fingerprinting function. To put it another way, a
work defining a novel type of fingerprinting function should also
design a tailored distance metric at the same time.

3 MOTIVATION

Listing 1: An example program� �
1 public static String process(String s){
2 if(s.contains("*1*") || s.contains("*2*")){
3 return "";}
4 int sign = 0;
5 int sum_1 = 0;
6 sum_1 = s.contains("wordNone") ? 1 : 0;
7 sign += sum_1;
8 s = s.replaceAll("wordNone", "?1?");

// Fault1: "?1?" should be "*1*"
9 int sum_2 = 0;
10 sum_2 = s.contains("wordNtwo") ? 2 : 0;
11 sign += sum_2;
12 s = s.replaceAll("wordNtwo", "*2*");
13 if(sign == 3){
14 return "both pattern recognized";}
15 String msg = sign == 1 ? "wordNone recognized" :

"pass";
16 msg = sign > 2 ? "wordNtwo recognized" : msg;

// Fault2: "> 2" should be "== 2"
17 return s + "//" + msg;}
� �

In Figure 1 in Section 1, we describe that when the multiple fail-
ures with distinct root causes present to have an identical coverage
profile, neither the CC-based nor the SD-based failure proximity
can work well. Here we use a motivating example to illustrate such
a scenario. The toy program in Listing 1 aims to replace certain
words from the input string, and output the modified string and the
log message. Specifically, if an input string contains “wordNone” or
“wordNtwo”, these two words will be replaced with “*1*” and “*2*”,
respectively. The log message records the operation of the program.
Given a test suite containing 12 test cases: 𝑡1 = “speak wordNone”, 𝑡2
= “wordNone”, 𝑡3 = “wordNonecontained”, 𝑡4 = “wwwwordNoneeee”,
𝑡5 = “has wordNtwo”, 𝑡6 = “wordNtwo”, 𝑡7 = “”, 𝑡8 = “midd*1*le”, 𝑡9 =
“*1*2*”, 𝑡10 = “a normal sentence”, 𝑡11 = “wordnonewordNtw”, and 𝑡12
= “wordNone and wordNtwo”. Six of them are labeled as 𝑓 𝑎𝑖𝑙𝑒𝑑 due
to the unexpected outputs: 𝑡1, 𝑡2, 𝑡3 and 𝑡4 are triggered by 𝐹𝑎𝑢𝑙𝑡1,
𝑡5 and 𝑡6 are triggered by 𝐹𝑎𝑢𝑙𝑡2 (we refer to the failed test cases
𝑡1 ∼ 𝑡6 as 𝑓1 ∼ 𝑓6, respectively). An ideal failure indexing process
should satisfy two goals. The first is to correctly predict the number
of clusters (i.e., the number of faults, two). And the second is to
properly index failures according to their root cause, i.e., delivering
two clusters, {𝑓1, 𝑓2, 𝑓3, 𝑓4} and {𝑓5, 𝑓6}.

We can find that all of these six failed test cases have an iden-
tical coverage profile, i.e., {𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10, 𝑠11, 𝑠12,
𝑠13, 𝑠15, 𝑠16, 𝑠17}. Therefore, the CC-based failure proximity will
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Figure 2: The overview of ReClues

represent these failures identically and thus have no way to distin-
guish them. Notice that if the gathered coverage information is the
same, the SD-based failure proximity will also be trapped, because
the incorporation of SBFL techniques cannot handle the scenario
where multiple faults are triggered in the same path. That is to say,
even the most widespread and state-of-the-art failure prox-
imities are still not enough to deliver promising outcomes
in such an identical coverage situation, which, unfortunately,
is very common in practice, as concluded by a well-known study
in the field of failure indexing:

“A significant portion of execution profiles would be the
same even if these failures are due to different faults” [47].

Thus, developing a better failure proximity is of great significance.
To this aim, two questions must be answered: 1) How to define a
fingerprinting function to better extract the signature of failures?
And 2) How to design a tailored distance metric for measuring the
similarity between the proxies for failures?

4 APPROACH
4.1 Overview
The program variable-based failure proximity uses the run-time
values of program variables to represent failures, and measures the
similarity between failures based on the characteristics of variable
information. Following this description, we propose a novel failure
indexing approach, ReClues. We depict its overall workflow in
Figure 2 and summarize the four phases as follows:

• Phase-1: Executing the test suite against the faulty program,
inputting the code coverage into a spectrum-based fault
localization technique to calculate suspiciousness for each
program statement, and determining the Top-𝑥% riskiest
statements as breakpoints.

• Phase-2: For each failed test case 𝑓𝑖 (𝑖 = 1, 2, ..., 𝑝), collecting
the run-time variable information during its execution at the
preset breakpoints. The variable information will serve as
the proxy for the corresponding failure, denoted as 𝑉 𝐼𝑖 (𝑖 =
1, 2, ..., 𝑝).

• Phase-3: Calculating the distance between each pair of 𝑉 𝐼𝑠
using the proposed distance metric.

• Phase-4: Delivering the distance information to the down-
stream clustering algorithm, enabling all failures to be in-
dexed according to the root cause.

Phase-1 and Phase-2 are the fingerprinting function, Phase-3 depicts
the distance metric, and Phase-4 is the clustering algorithm. Next
we elaborate on the technical details of each.

4.2 Fingerprinting Function
Instead of solely considering code coverage, we dig deeper into
available information during the dynamic execution, and use run-
time program variable information, i.e., the run-time values of
program variables queried at a set of breakpoints during running
a failed test case, to better represent this failure. It is obvious that
such a fingerprinting function involves two factors: the breakpoint
determination and the variable information collection.

4.2.1 Breakpoint determination (Phase-1). We first employ an SBFL
technique to calculate risk values for each program statement, then
determine whether a statement should be set as a breakpoint (the
Top-𝑥% riskiest statements are selected). The intuition we adopt this
strategy is that statements with higher risk values are more likely to
be faulty, and variable information collected at these positions could
have stronger capability to reveal the faults, thus can contribute
more to representing failures. We further investigate the impact of
the value of 𝑥 on the effectiveness of ReClues in Section 6.1. As a
reminder, our method does not require SBFL to pinpoint the precise
faulty location. We only desire a set of highly-risky statements,
which are sufficient to identify potential breakpoints for monitoring
the execution of faulty programs.

4.2.2 Variable information collection (Phase-2). In ReClues, the
proxy for a failure is defined as a two-dimension dictionary. Specifi-
cally, the 𝑖th failed test case 𝑓𝑖 in the test suite can be represented as
𝑉 𝐼𝑖 = {𝑏𝑝1:𝑉 𝑖

1 , 𝑏𝑝2:𝑉
𝑖
2 , ..., 𝑏𝑝 𝑗 :𝑉

𝑖
𝑗
,..., 𝑏𝑝𝑞 :𝑉 𝑖

𝑞 }, where𝑉 𝑖
𝑗
denotes the

variable information queried at the 𝑗 th breakpoints (denoted as 𝑏𝑝 𝑗 )
during the execution of 𝑓𝑖 , 𝑞 is the total number of preset break-
points.𝑉 𝑖

𝑗
is also a dictionary, which contains the name (dictionary’s

key) and value (dictionary’s value) of the queried variables.
When a program stops at a statement, only the variable infor-

mation at the position before the execution of that statement can
be collected. Thus, to make sure that variable information is col-
lected regarding the positions determined by Phase-1, when faulty
programs stop at each breakpoint, we continue executing a further
step and then carry out the collection operation. In addition, if a
statement is covered for more than once, the variables’ value is
collected when the execution is completed, since the latest value
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reflects the entire accumulation of the execution. As a reminder,
for the sake of cost saving, if there are function calls in a statement,
we do not iteratively navigate to the callee to query variable in-
formation, but focus on the original location of preset breakpoints
(Experiments in Section 6 demonstrate that this strategy is good
enough for failure indexing).

4.3 Distance Metric
In failure indexing, a basic concept is that failures triggered by the
same fault should be as similar as possible, and vice versa. Thus, in
the context of ReClues, the intuition of designing a distance metric
can be concretized as the run-time variable information of the fail-
ures caused by the same fault should be as similar as possible, and
vice versa. For making ReClues better competent to such a mission,
its distance metric is designed with two levels: the breakpoint level
and the variable level. Given a pair of failures that requires mea-
suring the distance, 𝑓𝛼 and 𝑓𝛽 , the breakpoint level divides all of
the breakpoints into three categories, i.e, those covered by both 𝑓𝛼
and 𝑓𝛽 , those covered by only one of 𝑓𝛼 and 𝑓𝛽 , and those covered
by neither of them. Then, the variable level further compares the
variable information at the breakpoints fallen into the first category.
The detailed descriptions of the two levels are as follows.

4.3.1 Breakpoint level (Phase-3). Given a pair of failed test cases, 𝑓𝛼
and 𝑓𝛽 , the breakpoint level calculates the distance between them
using Formula 1,

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑓𝛼 , 𝑓𝛽 =

∑𝑞

𝑗
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏𝑝 𝑗∑𝑞

𝑗
𝐵𝑃𝐶𝑜𝑢𝑛𝑡 𝑗

(1)

where 𝑞 is the number of preset breakpoints, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏𝑝 𝑗
is the

distance between 𝑓𝛼 and 𝑓𝛽 at the 𝑗 th breakpoint𝑏𝑝 𝑗 , and 𝐵𝑃𝐶𝑜𝑢𝑛𝑡 𝑗
is a binary constant for getting the mean of distances6.

For 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏𝑝 𝑗
, we calculate its value according to both For-

mula 2 and Formula 3.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏𝑝 𝑗
=


𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑗
𝑣𝑎𝑟 𝑒𝛼𝑗 + 𝑒

𝛽

𝑗
= 2

1 𝑒𝛼𝑗 + 𝑒
𝛽

𝑗
= 1

0 𝑒𝛼𝑗 + 𝑒
𝛽

𝑗
= 0

(2)

𝑒
𝛼 |𝛽
𝑗

=

{
1 if 𝑓𝛼 | 𝑓𝛽 covers 𝑏𝑝 𝑗
0 if 𝑓𝛼 | 𝑓𝛽 not covers 𝑏𝑝 𝑗

(3)

And for 𝐵𝑃𝐶𝑜𝑢𝑛𝑡 𝑗 , we calculate its value according to both For-
mula 4 and Formula 3.

𝐵𝑃𝐶𝑜𝑢𝑛𝑡 𝑗 =


1 𝑒𝛼

𝑗
+ 𝑒

𝛽

𝑗
= 2

1 𝑒𝛼
𝑗
+ 𝑒

𝛽

𝑗
= 1

0 𝑒𝛼
𝑗
+ 𝑒

𝛽

𝑗
= 0

(4)

It can be seen that all breakpoints are divided into three cate-
gories, and as a consequence ofwhich, the calculation of𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑓𝛼 , 𝑓𝛽
also involves three scenarios:
6There could be an uncommon situation that the value of

∑𝑞

𝑗
𝐵𝑃𝐶𝑜𝑢𝑛𝑡 𝑗 is zero, which

means that two failures do not cover any breakpoint. Setting more breakpoints can
handle it, and we investigate this question in Section 6.1.

• For those breakpoints covered by both of the failures
(𝑒𝛼
𝑗
+𝑒𝛽

𝑗
= 2).𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏𝑝 𝑗

is set to𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑗𝑣𝑎𝑟 , which will be
further calculated using the variable information, and such
a process is discussed at the variable level in Section 4.3.2.
And 𝐵𝑃𝐶𝑜𝑢𝑛𝑡 𝑗 is set to 1.

• For those breakpoints covered by only one of the fail-
ures (𝑒𝛼

𝑗
+ 𝑒

𝛽

𝑗
= 1). It means that two failures have distinct

execution paths at those breakpoints, their variable informa-
tion at those breakpoints should also be regarded as distinct.
Thus,𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏𝑝 𝑗

is directly set to the maximum value, 1 (all
the values of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏𝑝 𝑗

will be normalized to the interval
of [0, 1]). And 𝐵𝑃𝐶𝑜𝑢𝑛𝑡 𝑗 is set to 1.

• For those breakpoints covered by neither of the fail-
ures (𝑒𝛼

𝑗
+ 𝑒

𝛽

𝑗
= 0). We think it is difficult for them to make

any contribution to failure indexing. Therefore, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏𝑝 𝑗

is directly set to 0, and 𝐵𝑃𝐶𝑜𝑢𝑛𝑡 𝑗 is also set to 0, to make
sure they have no impact on the outcome of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑓𝛼 , 𝑓𝛽 .

4.3.2 Variable level (Phase-3). As defined in Formula 2, if failed
test cases 𝑓𝛼 and 𝑓𝛽 both cover 𝑏𝑝 𝑗 , 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏𝑝 𝑗

will be set to
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑗
𝑣𝑎𝑟 , which is with in the scope of the variable level. We

calculate the value of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑗𝑣𝑎𝑟 using Formula 5,

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑗
𝑣𝑎𝑟 =


∑|𝑉̂ 𝛼

𝑗
∪𝑉̂ 𝛽

𝑗
|

𝑧 𝑑𝑖𝑠𝑧

|𝑉̂𝛼
𝑗
∪𝑉̂ 𝛽

𝑗
|

if |𝑉𝛼
𝑗
∪𝑉

𝛽

𝑗
| > 0

1 if |𝑉𝛼
𝑗
∪𝑉

𝛽

𝑗
| == 0

(5)

where 𝑉𝛼 |𝛽
𝑗

is the set of all variables’ names collected at 𝑏𝑝 𝑗 while

executing 𝑓𝛼 or 𝑓𝛽 . 𝑉𝛼
𝑗
∪𝑉

𝛽

𝑗
stands for the union of all variables’

names collected at 𝑏𝑝 𝑗 while executing 𝑓𝛼 and 𝑓𝛽 , and |𝑉𝛼
𝑗
∪𝑉

𝛽

𝑗
| is

the scale of this union. If the value of
���𝑉𝑎
𝑗
∪𝑉𝑏

𝑗

��� equals 0, meaning
that no variable is collected at 𝑏𝑝 𝑗 while executing the two failures,
we simply set 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑗𝑣𝑎𝑟 to the maximum value (i.e., 1) to handle
this situation. Otherwise, We use a 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒-𝑡𝑜-𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 tactic to
measure the similarity between 𝑓𝛼 and 𝑓𝛽 at 𝑏𝑝 𝑗 . Specifically, each

of the variables in 𝑉𝛼
𝑗
∪𝑉

𝛽

𝑗
will be compared with its counterpart

(i.e., the same variable collected during executing the other failure).
Such a 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒-𝑡𝑜-𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 tactic is implemented by 𝑑𝑖𝑠𝑧 in For-

mula 5, which is the distance between the values of the 𝑧th variable
in the execution of 𝑓𝛼 and 𝑓𝛽 , as defined in Formula 6, Formula 7,
and Formula 8 (For convenience, we denote the 𝑧th variable as 𝑣𝑎𝑟𝑧 ,
and denote the values of 𝑣𝑎𝑟𝑧 during the execution of 𝑓𝛼 and 𝑓𝛽 as

𝑣𝑎𝑙𝛼𝑧 and 𝑣𝑎𝑙𝛽𝑧 , respectively).

𝑑𝑖𝑠𝑧 =


Jacc

(
𝑣𝑎𝑙𝛼𝑧 , 𝑣𝑎𝑙

𝛽
𝑧

)
𝑐𝛼𝑧 + 𝑐𝛽𝑧 = 2 and 𝑛𝛼𝑧 + 𝑛𝛽𝑧 = 0

1 𝑐𝛼𝑧 + 𝑐𝛽𝑧 = 2 and 𝑛𝛼𝑧 + 𝑛𝛽𝑧 = 1
0 𝑐𝛼𝑧 + 𝑐𝛽𝑧 = 2 and 𝑛𝛼𝑧 + 𝑛𝛽𝑧 = 2
1 𝑐𝛼𝑧 + 𝑐𝛽𝑧 = 1

(6)

𝑐
𝛼 |𝛽
𝑧 =

{
1 if 𝑓𝛼 | 𝑓𝛽 collects 𝑣𝑎𝑟𝑧
0 if 𝑓𝛼 | 𝑓𝛽 not collects 𝑣𝑎𝑟𝑧

(7)

1363



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Song, et al.

𝑛
𝛼 |𝛽
𝑧 =

{
0 if 𝑣𝑎𝑙𝛼𝑧 | 𝑣𝑎𝑙𝛽𝑧 is not null
1 if 𝑣𝑎𝑙𝛼𝑧 | 𝑣𝑎𝑙𝛽𝑧 is null

(8)

It can be seen that all of the variables are divided into four
categories, and as a consequence of which, the calculation of 𝑑𝑖𝑠𝑧
also involves four scenarios:

• If a variable is collected by both of the failures, and
neither of their values is null (𝑐𝛼𝑧 + 𝑐𝛽𝑧 = 2 and 𝑛𝛼𝑧 + 𝑛𝛽𝑧 =
0), we use the Jaccard distance, which is defined in Formula 9,
to calculate 𝑑𝑖𝑠𝑧 .

• If a variable is collected by both of the failures, and
one of the values is null, (𝑐𝛼𝑧 + 𝑐𝛽𝑧 = 2 and 𝑛𝛼𝑧 + 𝑛𝛽𝑧 = 1), we
assign the maximum value (i.e., 1) to 𝑑𝑖𝑠𝑧 , since the two val-
ues are uncomparable, which shows the divergence between
the two failures when it comes to this variable at 𝑏𝑝 𝑗 .

• If a variable is collected by both of the failures, and
both of the two values are null (𝑐𝛼𝑧 + 𝑐

𝛽
𝑧 = 2 and 𝑛𝛼𝑧 + 𝑛

𝛽
𝑧

= 2), we assign the minimum value (i.e., 0) to 𝑑𝑖𝑠𝑧 , since such
a condition can be considered as 𝑣𝑎𝑙𝛼𝑧 and 𝑣𝑎𝑙

𝛽
𝑧 having no

difference.
• If a variable is collected by only one of the failures
(𝑐𝛼𝑧 + 𝑐

𝛽
𝑧 = 1), we assign the maximum value (i.e., 1) to 𝑑𝑖𝑠𝑧 ,

because this condition indicates that the two failures may
have different dataflows.

As mentioned previously, if 𝑣𝑎𝑟𝑧 falls into the first category, the
value of 𝑑𝑖𝑠𝑧 is calculated by the Jaccard distance using Formula 9.
This is because in our experiments, we find that regarding a vari-
able’s value as a string is beneficial for distance measurement7,
and the Jaccard distance is commonly used in measuring the dis-
tance between two strings (it regards a string as a set of multiple
characters8) [42, 51, 55].

Jacc
(
𝑣𝑎𝑙𝛼𝑧 , 𝑣𝑎𝑙

𝛽
𝑧

)
= norm

(
1 -

|𝑣𝑎𝑙𝛼𝑧 ∩ 𝑣𝑎𝑙
𝛽
𝑧 |

|𝑣𝑎𝑙𝛼𝑧 ∪ 𝑣𝑎𝑙
𝛽
𝑧 |

)
(9)

The function 𝑛𝑜𝑟𝑚 is used to achieve the 0-1 normalization, which
is employed to make the same scale for the distances in the four
scenarios, and is defined in Formula 10.

norm(𝐽𝑧) =
𝐽𝑧 −min(𝐽 )

max(𝐽 ) −min(𝐽 ) (10)

Where 𝐽𝑧 is the value of 𝐽𝑎𝑐𝑐
(
𝑣𝑎𝑙𝛼𝑧 , 𝑣𝑎𝑙

𝛽
𝑧

)
without the normaliza-

tion. And𝑚𝑎𝑥(𝐽 ) and𝑚𝑖𝑛(𝐽 ) are the maximum and the minimum
values among all 𝐽𝑧 , respectively.

To summarize, Figure 3 depicts the workflow of the distance met-
ric, clarifying the relationship among all of the mentioned formulas:
Formula 1 is the core of the distance metric, while Formula 2 and
Formula 3 are for its numerator, and Formula 4 and Formula 3 are
for its denominator. Formula 5 is called by Formula 2, which can be
supported by Formula 6, Formula 7, and Formula 8. And Formula 6
is determined by Formula 9 and Formula 10.
7For some special types of variables, further action will be taken. For example, for a
pointer, we will further index its value by address.
8For instance, for two strings “𝑎𝑏𝑎𝑐” and “𝑎𝑏𝑐𝑑”, the Jaccard distance between them
can be calculated as 3 / 4 = 0.75 (the length of the intersection of the sets {‘𝑎’, ‘𝑏’, ‘𝑐’}
and {‘𝑎’, ‘𝑏’, ‘𝑐’, ‘𝑑 ’} is 3, and the length of the union is 4).
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Figure 3: The workflow of the distance metric

In the distance metric, we borrow the idea of SBFL to ignore the
execution order of breakpoints. Specifically, SBFL builds linkages
between tests and programs through coverage without considering
the concrete control flow, and such a strategy for modeling raw
data has been widely recognized by academia [76, 78, 84].

4.4 Clustering Algorithm
We employ the clustering component of MSeer [24], the state-of-
the-art failure indexing technique, to complete the clustering stage
of ReClues (i.e., Phase-4 in Figure 2). This algorithm involves the
faults number estimation and the clustering. Next we give a concise
description and more details can be found in the reference [24].

4.4.1 The faults number estimation (Phase-4). It is well-recognized
that one of the trickiest challenges in clustering lies in the estima-
tion of the number of clusters [22, 40, 62]. Putting it into the context
of failure indexing, we can claim that predicting the number of faults
given a set of failures is of great importance. The adopted algorithm
presents a novel mountain method-based technique inspired by
previous works [10, 82], to carry out the faults number estimation
and the assignment of initial medoids to clusters simultaneously.
Specifically, it first calculates a potential value for each data point
(i.e., a failure) according to the density of its surroundings, such a
potential value is used to measure the possibility of a failure being
set as a medoid. And then, 1) Choosing the failure with the highest
potential value as a medoid. 2) Updating the potential values of all
failures in accordance with their distance from the newest medoid.
3) Repeating these two processes iteratively, until the maximum
potential value falls within a certain threshold.

4.4.2 The clustering (Phase-4). The adopted algorithm utilizes a
widely-used clustering technique, K-medoids. The K-medoids tech-
nique sets actual (rather than virtual) data points as medoids thus
can be more applicable to ReClues, because the mean of variable
information is difficult to define. Furthermore, the K-medoids tech-
nique has shown to be very robust to the existence of noise or
outliers [19, 37].

4.5 Running Example
We recall the toy program in Listing 1 to exemplify the workflow
of ReClues step-by-step. Here we give a simplified version of this
running example due to the space limitation, the complete version
of this example can be found in our public repository9.

9https://github.com/yisongy/ReClues_Repo/blob/main/detailedExample.pdf
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Table 1: Distance information of the running example

𝒇1 𝒇2 𝒇3 𝒇4 𝒇5 𝒇6
𝒇1 0 0.2 0.2 0.2 0.8 1
𝒇2 0.2 0 0.2 0.2 1 1
𝒇3 0.2 0.2 0 0.2 0.8 1
𝒇4 0.2 0.2 0.2 0 1 1
𝒇5 0.8 1 0.8 1 0 0.2
𝒇6 1 1 1 1 0.2 0

For Phase-1 (Breakpoint determination). Employing an SBFL tech-
nique (e.g., DStar [70]) to calculate suspiciousness for each state-
ment, and determine several riskiest statements as breakpoints (the
determination threshold will be investigated in Section 6.1, here
we take Top-10% as an example). Thus, 𝑠15 and 𝑠16 are selected as
breakpoints10.

For Phase-2 (Variable information collection). Collecting the run-
time variable information at 𝑠15 (𝑏𝑝1) and 𝑠16 (𝑏𝑝2) during the ex-
ecution of the six failed test cases, i.e., representing 𝑓1 ∼ 𝑓6 as
𝑉 𝐼1 ∼ 𝑉 𝐼6, respectively.

For Phase-3 (Distance measurement). The distances between each
pair of failures (i.e., each pair of variable information) are calculated
and given in Table 1. Revisiting the mapping relationship between
the two faults and the six failures, i.e., 𝐹𝑎𝑢𝑙𝑡1 : {𝑓1, 𝑓2, 𝑓3, 𝑓4} and
𝐹𝑎𝑢𝑙𝑡2 : {𝑓5, 𝑓6}. It can be seen that the failures triggered by the
same fault are highly similar, while on the contrary, the failures
triggered by different faults show low similarity to each other.

For Phase-4 (Clustering). Running the clustering algorithm, two
groups will be produced: {𝑓1, 𝑓2, 𝑓3, 𝑓4} and {𝑓5, 𝑓6}. Revisiting the
oracle of this example given in Section 3, the clustering result can be
found to achieve promising failure indexing, because ReClues prop-
erly divides all of the six failures according to the two underlying
root causes.

From this example we can observe that the mechanism of Re-
Clues lies in the dataflow. Specifically, when the coverage of the
failures having distinct root causes is identical, the run-time values
of program variables could play a role of distinguisher. It should be
pointed out that although dynamic slices can reflect the dataflow
to an extent and thus can preliminarily divide those failures, we
are interested in whether there is a finer-grained and more precise
representer that can be competent to such a mission.

5 EXPERIMENTAL SETUP
In this section, we introduce the experimental setup of this study,
including research questions, parameter setting, datasets, metrics,
and environments.

5.1 Research Questions
• RQ1: The value of the hyperparameter. In the finger-
printing function, ReClues determines the Top-𝑥% riskiest
statements as breakpoints. We investigate how the value of
𝑥 impacts the effectiveness of ReClues.

• RQ2: Impact analyses of components. In the distance
metric, ReClues measures the similarity between two sets of

10If several statements share the same value of suspiciousness, we adopt the widely-
used solution by ranking them in the ascending order of line numbers [24, 52, 61, 79].

Table 2: Benchmarks

Language Project Version kLOC Functionality

C

flex 2.5.3 14.5 Parser generator
grep 2.4 13.5 Text matcher
gzip 1.2.2 7.3 File archiver
sed 3.02 10.2 Stream editor

Java

Chart 2.0.0 96.3 Chart library
Closure 2.0.0 90.2 Closure compiler
Lang 2.0.0 22.1 Apache commons-lang
Math 2.0.0 85.5 Apache commons-math
Time 2.0.0 28.4 Date and time library

variable information through the breakpoint level and the
variable level. How does each of the two components impact
the effectiveness of ReClues?

• RQ3: Competitiveness of ReClues. How does ReClues
perform compared with the current most prevalent and
promising failure indexing techniques?

5.2 Parameter Setting
As stated in Section 4.2.1, we need to first determine an SBFL tech-
nique to calculate risk values for program statements. In the ex-
periment, we use DStar11, one of the best SBFL techniques [70].
Such a choice is not hard-coded but can be configurable, ReClues
can adapt to any other fault localization techniques that are able
to deliver a suspiciousness ranking list of program entities at the
statement granularity.

5.3 Datasets
5.3.1 Simulated Scenarios. SIR (Software-artifact Infrastructure
Repository) is a classical platform for experiments in software test-
ing and debugging [17]. We obtain four C projects from SIR: 𝑓 𝑙𝑒𝑥 ,
𝑔𝑟𝑒𝑝 , 𝑔𝑧𝑖𝑝 , and 𝑠𝑒𝑑 , which have been extensively adopted in ear-
lier works [8, 25, 59]. Based on these programs, we create 1-bug,
2-bug, 3-bug, 4-bug, and 5-bug faulty versions (i.e., faulty programs
containing one, two, three, four, and five bugs, respectively) by
employing mutation strategies [50], in light of the fact that previ-
ous research has confirmed that mutation-based faults can provide
credible results for experiments in software testing and debug-
ging [4, 5, 18, 36, 44, 57]. To create an 𝑟 -bug faulty version (𝑟 =
1, 2, 3, 4, 5), we inject 1, 2, 3, 4, and 5 mutant(s) into the clean
program, respectively. This approach (creating multiple-bug faulty
versions by injecting bugs from multiple single-bug mutants) has
been used by the majority of the published studies [1, 27, 28, 41, 85].
We employ an existing tool with 13 “fork” and 23 “star” on GitHub
to perform mutation [7]. It defines 67 types of points that can be
mutated, and provides several mutation operators for each one. For
example, replacing operators such as addition, subtraction, mul-
tiplication, division, etc. with each other [31], and reversing an
𝑖 𝑓 -𝑒𝑙𝑠𝑒 predicate, deleting an 𝑒𝑙𝑠𝑒 statement, modifying a decision
condition [80], and so on. The description of the four projects is
given in Table 2. In total, we create 600 SIR faulty versions.

11Considering the preference for DStar in many other studies (such as [6, 53, 69]), we
set the value of * in DStar to 2, the most thoroughly-explored value, in our experiments.
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Table 3: Scenarios in two types of metrics

Metric Notation Results of failure indexing
In generated cluster In oracle cluster

FMI and JC

SS Same Same
SD Same Difference
DS Difference Same
DD Difference Difference

PR and RR

TP Positive Positive
FP Positive Negative
TN Negative Negative
FN Negative Positive

5.3.2 Real-world Scenarios. Defects4J is one of the most popular
benchmarks in the current field of software testing and debugging,
due to its realism and ease-to-use [35]. We obtain five Java projects
from Defects4J: 𝐶ℎ𝑎𝑟𝑡 , 𝐶𝑙𝑜𝑠𝑢𝑟𝑒 , 𝐿𝑎𝑛𝑔, 𝑀𝑎𝑡ℎ, and 𝑇𝑖𝑚𝑒 , and then
based on which search for 1-bug, 2-bug, 3-bug, 4-bug, and 5-bug
faulty versions, according to the search strategy proposed by An
et al. [3]. Specifically, Defects4J is typically for single-fault scenar-
ios, namely, no matter how many bugs are contained in a faulty
program, the provided test suite is only sufficient to reveal one
of them. Such a characteristic hinders its use in failure indexing.
To adapt Defects4J to multi-fault scenarios, An et al. presented a
search strategy to enhance the test suite, that is, transplanting the
fault-revealing test case(s) of another faulty version (or other faulty
versions) to the original faulty version, allowing a larger-scale test
suite to find more faults in the original program. The description of
the five projects is given in Table 2. In total, we get 100 Defects4J
faulty versions.

5.4 Metrics
Generally speaking, the capability of a failure indexing approach
can be measured from two aspects. One is the faults number estima-
tion, namely, to what extent the number of faults can be correctly
predicted given a series of observed failures. And the other is the
clustering effectiveness, namely, to what extent these failures can
be indexed according to the root cause.

5.4.1 Faults number estimation. For an 𝑟 -bug faulty version, we
utilize a failure indexing approach 𝑇 to estimate the number of
faults 𝑟 . If the estimated number of faults 𝑘 is equal to 𝑟 , we mark
this faulty version as 𝑒𝑞𝑢𝑎𝑙 , and use 𝑉𝑇

𝑒𝑞𝑢𝑎𝑙
to denote the number

of faulty versions that fall into the 𝑒𝑞𝑢𝑎𝑙 category when using 𝑇 .
Obviously, a larger value of 𝑉𝑇

𝑒𝑞𝑢𝑎𝑙
indicates a stronger capability

to represent failures of 𝑇 .

5.4.2 Clustering effectiveness. We employ the Fowlkes and Mal-
lows Index (FMI), the Jaccard Coefficient (JC), the Precision Rate
(PR), and the Recall Rate (RR), to measure the effectiveness of
a clustering process. These four metrics are classic and ease-to-
implement, and they have also been adopted in a collection of prior
research [73, 75, 87].

Among them, FMI and JC compare the indexing consistency of
each pair of failed test cases in the generated cluster with that in
the oracle cluster [21], as shown in Formula 11 and Formula 12. The
four possible scenarios in the comparison can be found in Table 3.

𝐹𝑀𝐼 =

√
𝑋𝑆𝑆

𝑋𝑆𝑆 + 𝑋𝑆𝐷
× 𝑋𝑆𝑆

𝑋𝑆𝑆 + 𝑋𝐷𝑆
(11)

𝐽𝐶 =
𝑋𝑆𝑆

𝑋𝑆𝑆 + 𝑋𝑆𝐷 + 𝑋𝐷𝑆
(12)

Where 𝑋𝑆𝑆 is the number of pairs of “SS”, and so forth.
PR and RR compare the classification result of failed test cases

in the generated cluster with that in the oracle cluster, as shown
in Formula 13 and Formula 14. The four possible scenarios in the
comparison can be found in Table 3.

𝑃𝑅 =
𝑋𝑇𝑃

𝑋𝑇𝑃 + 𝑋𝐹𝑃
(13)

𝑅𝑅 =
𝑋𝑇𝑃

𝑋𝑇𝑃 + 𝑋𝐹𝑁
(14)

Where 𝑋𝑇𝑃 is the number of failures of “TP”, and so forth.
We deliver only the faulty versions whose number of faults is

correctly predicted (hereafter, simply referred to as “𝑘 == 𝑟” faulty
versions) to the following clustering phase. The reason behind such
a strategy is that, if the predicted number of faults 𝑘 is not equal to
𝑟 , it is hard to compare the 𝑘 generated clusters with the 𝑟 oracle
groups. As a consequence of which, the measurement of clustering
effectiveness can be difficult. We use Formula 15 to calculate the
sum of the metric values on “𝑘 == 𝑟” faulty versions,

𝑆_𝑀 𝑇
𝑀 =

𝑉𝑇
𝑒𝑞𝑢𝑎𝑙∑
𝑖

𝑀𝑖 (15)

where 𝑆_𝑀 is the abbreviation for “𝑆𝑢𝑚_𝑀𝑒𝑡𝑟𝑖𝑐𝑠”. 𝑉𝑇
𝑒𝑞𝑢𝑎𝑙

is the
number of “𝑘 == 𝑟” faulty versions when using 𝑇 .𝑀𝑖 is the value
of the clustering metric𝑀 (𝑀 takes FMI, JC, PR, or RR) on the 𝑖th
“𝑘 == 𝑟” faulty version.

Notice that “𝑘 == 𝑟” is just an ideal scenario (not necessary) for
ReClues. Even if 𝑘 ≠ 𝑟 , ReClues can also work, as introduced in
Section 1 (the part of “over-division” and “under-division”).

5.5 Environments
We collect program coverage and run-time variable information
on Ubuntu 16.04.1 LTS with GCC 5.4.0 and JDB 1.8. The distance
measurement and clustering processes run on a server equipped
with 96 Intel Xeon(R) Gold 5218 CPU cores with 2.30GHz and 160
GB of memory.

6 RESULT AND ANALYSIS
6.1 RQ1: The value of the hyperparameter
We investigate the effectiveness of ReClues for the value of 𝑥 taking
5, 10, 15, and 20 (i.e., determining the Top-5%, Top-10%, Top-15%,
and Top-20% riskiest statements as breakpoints, respectively) on
SIR. The results are given in Table 4 and Figure 4.

6.1.1 The capability to estimate the number of faults in different
values of 𝑥 . A promising failure indexing approach should make
the number of faults it predicts 𝑘 equal to the real number of faults
𝑟 . The values of𝑉𝑇

𝑒𝑞𝑢𝑎𝑙
, i.e., on how many faulty versions can “𝑘 ==

𝑟” be obtained using ReClues equipped with different values of 𝑥
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Table 4: Comparison in different values of 𝑥

T 𝑉𝑇
𝑒𝑞𝑢𝑎𝑙

𝑆_𝑀𝑇
𝐹𝑀𝐼

𝑆_𝑀𝑇
𝐽𝐶

𝑆_𝑀𝑇
𝑃𝑅

𝑆_𝑀𝑇
𝑅𝑅

ReClues5% 71 53.47 43.96 54.40 39.67
ReClues10% 98 73.02 59.68 74.74 55.06
ReClues15% 76 55.71 45.13 58.61 44.29
ReClues20% 71 53.06 43.54 55.16 43.60

Figure 4: Comparison in different values of 𝑥

(𝑇 takes ReClues5%, ReClues10%, ReClues15%, and ReClues20%), are
given in Table 4 and Figure 4. It can be seen that when the break-
point determination threshold is set to 10%, ReClues can correctly
estimate the number of faults on 98 faulty versions, while when
such a threshold is set to 5%, 15%, and 20%, the numbers of “𝑘 == 𝑟”
faulty versions are 71, 76, and 71, respectively.

6.1.2 The capability to cluster in different values of 𝑥 . For those
“𝑘 == 𝑟” faulty versions, we use the four metrics introduced in
Section 5.4 to evaluate the clustering effectiveness, as shown in
Table 4 and Figure 4. Taking “𝑆_𝑀𝑅𝑒𝐶𝑙𝑢𝑒𝑠10%

𝐹𝑀𝐼
: 73.02” as an example.

It means that on 98 “𝑘 == 𝑟” faulty versions achieved by ReClues10%,
the sum of the values of 𝐹𝑀𝐼 , i.e., 𝐹𝑀𝐼1 + 𝐹𝑀𝐼2 + ... + 𝐹𝑀𝐼98, is
73.02. We can observe that ReClues10% delivers 73.02, 59.68, 74.74,
and 55.06 points on the four metrics, which is more promising
compared with that delivered by the other three variants.

Based on these results, we can find that ReClues10% performs best.
We think that the Top-5% riskiest statements are not sufficient for
representing failures, while the Top-15% and the Top-20% riskiest
statements may incur irrelevant information, which can negatively
affect failure representation. Therefore, “ReClues” in the next two
RQs is “ReClues10%” in this RQ.

6.2 RQ2: Impact analyses of components
Revisiting Section 4.3, the distance metric of ReClues involves two
components, i.e., the breakpoint level and the variable level. In this
RQ, we further analyze the impact of each one. To that end, we
compare ReClues with its two variants, ReClues𝑣− (keep only the
breakpoint level and ablate the variable level) and ReClues𝑏− (keep
only the variable level and ablate the breakpoint level) on SIR.

As for ReClues𝑣− , we do not consider original variable infor-
mation at the breakpoints covered by both two failures, but only
consider variables’ name. Specifically, if two failures both cover a
breakpoint, we simply calculate the value of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑗𝑣𝑎𝑟 in For-
mula 2 through dividing the intersection of the names of the vari-
ables collected by the two failures at the breakpoint by their union,

Figure 5: Impact of ReClues components

rather than using Formula 5. And as for ReClues𝑏− , we merge vari-
able information collected by a failure at all breakpoints into a
hunk (without considering coverage of breakpoints), and feed such
hunks of two failures into the variable level. That is, we directly
use Formula 5 to measure the distance between two failures. The
results are given in Figure 5.

6.2.1 The capability to estimate the number of faults of different
components. Figure 5(a) compares ReClues with its two variants
in terms of the capability of faults number estimation, exhibiting
performance drops on the condition of an incomplete distance met-
ric. Specifically, ReClues𝑣− and ReClues𝑏−can correctly estimate
the number of faults on 37 and 77 faulty versions, respectively, de-
creased by 62.24% and 21.43% respectively compared with ReClues.

6.2.2 The capability to cluster of different components. The remain-
ing four sub-figures in Figure 5 perform the comparison in terms of
the capability to cluster, from the perspectives of FMI, JC, PR, and
RR. For example. ReClues can get 73.02 points on the metric FMI,
while ReClues𝑣− and ReClues𝑏− get 29.47 and 55.02 points, respec-
tively. On the metrics JC, PR, and RR, we can observe a similar trend
that ReClues𝑣− and ReClues𝑏− cause performance degradation.

We can find that the default ReClues performs best, demon-
strating that each component in the distance metric positively
contributes to ReClues’ performance. In particular, ablating the
variable level harms the effectiveness of ReClues to a larger extent
than ablating the breakpoint level, which double-confirms the in-
tuition of this paper, i.e., the run-time values of program variables
can be an effective failure distinguisher in failure indexing.

6.3 RQ3: Competitiveness of ReClues
As we mentioned in Section 2, SD-based and CC-based strategies
are the most advanced and prevalent failure proximities to date.
Therefore, we compare ReClues with these two for robust and
convincing evaluation. Specifically, as for the SD-based proximity,
we select MSeer [24] since it is the state-of-the-art in this class. And
as for the CC-based proximity, we select Covℎ𝑖𝑡 [28, 47] since it is
the most general configuration in this class. Moreover, considering
that some works concern the impact of the execution frequency of
program statements on debugging [58, 68], we also adopt a variant
of Covℎ𝑖𝑡 , i.e., Cov𝑐𝑜𝑢𝑛𝑡 , which employs execution frequency rather
than binary indicators as the fingerprinting function, as a baseline.
To evaluate ReClues in a more comprehensive environment, in this
RQ, we use both the simulated (SIR) and the real-world (Defects4J)
benchmarks. The results are given in Table 5, in which the first four
rows (marked as “(S)”) depict the results on SIR, while the last four
rows (marked as “(D)”) depict the results on Defects4J.
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Table 5: Comparison with the state-of-the-art techniques

T 𝑉𝑇
𝑒𝑞𝑢𝑎𝑙

𝑆_𝑀𝑇
𝐹𝑀𝐼

𝑆_𝑀𝑇
𝐽𝐶

𝑆_𝑀𝑇
𝑃𝑅

𝑆_𝑀𝑇
𝑅𝑅

(S) ReClues 98 73.02 59.68 74.74 55.06
(S) MSeer 68 51.73 42.77 53.25 32.55
(S) Cov𝑐𝑜𝑢𝑛𝑡 52 41.44 34.57 40.27 27.76
(S) Covℎ𝑖𝑡 29 23.46 20.03 20.46 13.73
(D) ReClues 37 36.92 36.85 35.92 36.12
(D) MSeer 29 28.99 28.98 28.75 28.75
(D) Cov𝑐𝑜𝑢𝑛𝑡 24 23.98 23.96 23.50 23.50
(D) Covℎ𝑖𝑡 20 20.00 20.00 20.00 20.00

6.3.1 The capability to estimate the number of faults on SIR. Re-
Clues substantially outperforms all the baseline techniques regard-
ing the capability of faults number estimation. Specifically, ReClues
can correctly predict the number of faults on 98 faulty versions
on SIR, with 44.12%, 88.46%, and 237.93% improvements compared
with MSeer (68), Cov𝑐𝑜𝑢𝑛𝑡 (52), and Covℎ𝑖𝑡 (29), respectively.

6.3.2 The capability to cluster on SIR. ReClues consistently exceeds
three baselines on all the four clustering metrics. For instance, if
we focus on the comparison between ReClues and MSeer, improve-
ments are 41.16%, 39.54%, 40.36%, and 69.16%, regarding FMI, JC, PR,
and RR, respectively. Considering the four metrics globally, the aver-
age improvement is 47.56%. Similarly, in the contexts of comparing
ReClues with Cov𝑐𝑜𝑢𝑛𝑡 and Covℎ𝑖𝑡 , the average improvements can
be calculated as 83.20% and 243.88%, respectively.

6.3.3 The capability to estimate the number of faults on Defects4J.
On all Defects4J faulty versions, ReClues can make 𝑘 equal to 𝑟

on 37 faulty versions, it is 27.59%, 54.17%, and 85.00% higher than
MSeer (29), Cov𝑐𝑜𝑢𝑛𝑡 (24), and Covℎ𝑖𝑡 (20), respectively.

6.3.4 The capability to cluster on Defects4J. Similar to that in sim-
ulated scenarios, we can also observe that ReClues has a stronger
capability of clustering than the baseline techniques in real-world
scenarios. In particular, if we focus on the comparison between
ReClues and MSeer, improvements are 27.35%, 27.16%, 24.94%, and
25.63%, regarding FMI, JC, PR, and RR, respectively. Considering the
four metrics globally, the average improvement is 26.27%. Similarly,
when comparing ReClues with Cov𝑐𝑜𝑢𝑛𝑡 and Covℎ𝑖𝑡 , the average
improvements are 53.58% and 82.26%, respectively.

Based on these results, we can find that ReClues significantly
outperforms the most advanced and prevalent techniques in the
current field of failure indexing, in both simulated and real-world
scenarios. Such promising outcomes demonstrate the competitive-
ness of ReClues, and show the potential of the proposed program
variable-based failure proximity.

7 DISCUSSION
7.1 Unique faulty versions handled by ReClues
In the experiments, we find that those “𝑘 == 𝑟” faulty versions
achieved by different techniques are not exactly the same. In other
words, some faulty versions can only be handled by a certain tech-
nique. We further discuss ReClues and the three baselines from this
aspect, as shown in Figure 6.

In Figure 6(a), we can find that of the 600 SIR faulty versions, 82
can only be handled by ReClues, 61, 38, and 24 can only be handled

Figure 6: The divergence of the “𝒌 == 𝒓” faulty versions

by MSeer, Cov𝑐𝑜𝑢𝑛𝑡 , and Covℎ𝑖𝑡 , respectively. A similar observa-
tion can be drawn from Figure 6(b): of the 100 Defects4J faulty
versions, 13 can only be handled by ReClues, 3, 1, and 0 can only
be handled by MSeer, Cov𝑐𝑜𝑢𝑛𝑡 , and Covℎ𝑖𝑡 , respectively. Though
none of the failure indexing techniques is completely dominated by
others, there are more faulty versions that can be uniquely handled
by ReClues. This result further shows the competitiveness of Re-
Clues from a heuristic perspective, and indicates a potential future
direction of combining different failure proximities.

7.2 Efficiency of ReClues
The time costs of ReClues mainly involve three parts, i.e., the fail-
ure representation, the distance measurement, and the clustering.
According to our investigation, ReClues typically spends 3.99 min-
utes and 5.90 minutes on average on generating the proxy for a
failed test case, and spends 0.07s and 0.03s on average on measur-
ing the distance between a pair of failed test cases, on SIR and
Defects4J faulty versions, respectively. After these two steps are
ready, the clustering process typically takes only a few seconds.
To summarize, the overhead of ReClues mainly lies in querying
variable information at each preset breakpoint.

In fact, failure indexing is essential yet very costly in real-life
manual debugging activities, as pointed out by pioneers, “Experi-
enced developers can manually examine every failure and determine
the culprit fault, but this is apparently too expensive” [47]. In contrast,
ReClues can finish this task automatically and hence can save a
lot of manual effort, which is much cheaper than manual jobs. It
is true that as compared with CC and SD-based methods, ReClues
needs higher costs. However, in return, ReClues delivers better
performance. Therefore, the cost of ReClues is acceptable: more
sophisticated fingerprinting is naturally accompanied by higher
overhead, i.e., “no free lunch” [47].

8 THREATS TO VALIDITY
Our experiments are subject to several threats to validity.

The first is about the representativeness of the benchmark. We
evaluate our approach on both simulated and real-world datasets.
For the former, we adopt a diversity of mutation operators to inject
faults, and for the latter, we collect projects from the industrial
programming practice. Although this allows us to have higher
confidence with respect to the generalization capability of ReClues,
those benchmarks could still not be enough to represent different
kinds of software systems. In the future, we plan to further evaluate
our approach in larger-scale and more general environments.
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The second is about the choice of the evaluation metrics. We
select four widely-used metrics, i.e., FMI, JC, PR, and RR, to quanti-
tatively demonstrate the promise of our approach, but all of these
four are external metrics, that is, the measurement of the clustering
effectiveness is dependent on external information (i.e., the oracle
groups). As another type of metrics, internal metrics are based on
the generated clusters themselves, which could also contribute to
our experimental evaluation, thus mitigating the bias incurred by
only employing external metrics. In the future, we plan to integrate
them into our work for more robust evaluation.

9 RELATEDWORK
As a very early work in this field, Podgurski et al. suggested us-
ing code coverage as a failure representer [56]. Since then, such
a CC-based failure proximity has been continuously adopted by
stakeholders. For example, Huang et al. conducted an empirical
study on failure indexing [28] and Wu et al. presented a multi-fault
localization technique [74] based on the CC proximity.

Later, Liu and Han regarded two failures as similar if they suggest
roughly the same fault location [45]. They introduced a statistical
debugging tool [46] to complete the mentioned suggestion process.
Such an SD-based failure proximity attracts broad attention from
academia. For example, Jones et al. utilized Tarantula [32, 33], while
Gao and Wong utilized Crosstab [24, 71], to facilitate the fault
location suggestion in the SD proximity.

If the coverage of the failures having different root causes is
identical, neither the CC nor the SD-based tactic can work well.
This paper utilizes the run-time values of program variables for
getting rid of this bottleneck, showing a remarkable improvement.

There are some recent works that introduce external profiles to
support the failure indexing, such as code-independent features
in regression testing [26], as well as code features and historical
features in continuous integration [2]. We do not consider such
types of studies since they go beyond our research scope: 1) their
source information cannot be always available, and 2) this paper
focuses on failure indexing in the context of multi-fault localization.

10 CONCLUSION
In this paper, we propose a novel type of failure proximity, namely,
the program variable-based failure proximity, and further present
ReClues, a variable information-based failure indexing approach.
ReClues mainly comprises the newly-defined fingerprinting func-
tion that integrates the run-time values of program variables to rep-
resent failures, and the distance metric designed to cooperate with
the fingerprinting function. Experiments demonstrate the competi-
tiveness of ReClues. Specifically, compared with the state-of-the-art
technique, ReClues can achieve 44.12% and 27.59% improvements
in faults number estimation, as well as 47.56% and 26.27% improve-
ments in clustering effectiveness, in simulated and real-world en-
vironments, respectively. Besides, there are more faulty programs
that can only be handled by ReClues compared with using the other
techniques in our experiment.

In the future, we plan to draw on deep learning methods to
deliver a stronger failure indexing approach. A further trial with
larger and more general benchmarks as well as a broader spectrum
of evaluation metrics is also being conceived.
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