
Do not neglect what’s on your hands: localizing software faults
with exception trigger stream

Xihao Zhang
School of Computer Science,

Wuhan University
Wuhan, China

zhangxihao@whu.edu.cn

Yi Song∗
School of Computer Science,

Wuhan University
Wuhan, China

yisong@whu.edu.cn

Xiaoyuan Xie†
School of Computer Science,

Wuhan University
Wuhan, China

xxie@whu.edu.cn

Qi Xin
School of Computer Science,

Wuhan University
Hubei Luojia Laboratory

Wuhan, China
qxin@whu.edu.cn

Chenliang Xing
School of Computer Science,

Wuhan University
Wuhan, China

xingchenliang@whu.edu.cn

ABSTRACT
Existing fault localization techniques typically analyze static in-
formation and run-time profiles of faulty software programs, and
subsequently calculate suspiciousness values for each program en-
tity. Such strategies typically have overbroad information to be
analyzed and lead to unsatisfactory results. Exception is a widely-
used programming language feature. It is closely related to the
execution status during the execution of programs, and thus can
be incorporated into automatic fault localization techniques for
better effectiveness. Based on this intuition, we propose EXPECT,
a novel fault localization technique that makes use of exception
information, a valuable source of data for fault localization while
being often ignored in previous research. Specifically, EXPECT first
constructs exception trigger streams (including exception trigger
information and execution traces), and then localizes faults by trac-
ing bifurcation points between different exception trigger streams.
Moreover, the tie-breaking problem can be also benefited from the
use of exception trigger streams. Experimental results demonstrate
the advantages of EXPECT: it achieves as high as 38.26% improve-
ments in localizing faults regarding the Exam metric in comparison
to the state-of-the-art fault localization technique, and it reduces
the scales of ties in existing FL methods by up to 99.08%.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

∗Co-first author.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00
https://doi.org/10.1145/3691620.3695479

KEYWORDS
Program debugging, Software testing, Fault localization, Exception
handling, Execution trace

ACM Reference Format:
Xihao Zhang, Yi Song, Xiaoyuan Xie, Qi Xin, and Chenliang Xing. 2024. Do
not neglect what’s on your hands: localizing software faults with exception
trigger stream. In 39th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’24), October 27-November 1, 2024, Sacramento, CA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3691620.
3695479

1 INTRODUCTION
Software debugging is a pivotal part of software quality assur-
ance [39, 58, 59] and has received much attention from developers.
Fault localization (FL) is regarded as the most tedious and painful
process in debugging [42, 49], and researchers have proposed dif-
ferent types of automatic fault localization techniques to tackle this
challenge [23, 27, 33, 38, 40, 67]. Among these techniques, methods
based on dynamic information have been demonstrated to gener-
ally deliver higher precision compared with techniques based on
static information [24, 61]. Thus, in this work, we also choose to
adopt dynamic information.

A typical pipeline of these techniques first gathers dynamic run-
time information of software programs. Then, they aim to reveal
some potential correlation between the gathered information and
software faults. A suspiciousness value is generally assigned to
each software element (e.g., a method, a basic block, or a statement)
and a ranking list of these elements can then be formed accordingly,
which will further serve as a guide for human developers during
debugging. Two representative types of dynamic information-based
FL techniques are Spectrum-Based Fault Localization (SBFL) [2, 11,
20, 38, 56, 57] and Mutation-Based Fault Localization (MBFL) [30,
37, 40, 68]. Recently, a novel semantics-based method, SmartFL is
proposed [67], which introduces a probabilistic approach and has
been demonstrated to outperform the state-of-the-art (SOTA) SBFL
and MBFL techniques.

982

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

https://doi.org/10.1145/3691620.3695479
https://doi.org/10.1145/3691620.3695479
https://doi.org/10.1145/3691620.3695479
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695479&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Xihao Zhang, Yi Song, Xiaoyuan Xie, Qi Xin, and Chenliang Xing

However, the scale of run-time information gathered in these
existing methods is somewhat overbroad. More specific infor-
mation that can help spot the root cause of failures is not fully
utilized. For example, SBFL generally collects coverage information
of passed and failed test cases, constructs the program spectrum,
and feeds it into a risk evaluation formula to statistically approx-
imate the correlation between the spectrum and the underlying
fault. However, the coverage-based spectrum typically has a large
scale. For example, the lengths of the coverage vectors of famous
open-source projects Chart, Time, and MyBatis1 are approximately
40,900, 14,900, and 11,000, respectively. Such overbroad information
hinders a precise analysis of root causes and may thus degrades
the effectiveness of SBFL. Moreover, it is hard for SBFL techniques
to distinguish program elements having the same spectrum infor-
mation, which, unfortunately, is very common in practice. The
mentioned bottlenecks of SBFL have already been reported in pre-
vious studies [22, 63, 64, 66].MBFL mutates faulty programs and
collects test results before and after mutation. By analyzing whether
the test results are changed by mutations on each program state-
ment, MBFL intends to identify the faulty part of the program. The
intuition behind this strategy is that if mutations on a statement
have a higher possibility to change the test result in the failing
tests instead of the passing tests, the corresponding statement may
have a higher possibility to contain the fault. However, to assess
the suspiciousness value of statements, MBFL needs to collect test
results after mutating each statement, the scale of such information
is even larger than that of coverage information. Moreover, MBFL is
severely limited by high costs in both time and computation, which
reduces the practicability of MBFL in real-world debugging [30, 71].
Though dynamic slicing-based strategies have been introduced
to reduce the run-time profiles to be analyzed in SBFL and MBFL,
the scale of dynamic slices is still decided by the program under
test and thus could be overbroad [7], and faulty statements are
possible to be missed in some methods [33, 69]. Recently, Zeng et
al. presented a novel semantics-based FL technique, SmartFL [67],
which models program semantics as well as information from static
analyses and dynamic execution traces, and employs a probabilistic
approach to localize faults. However, the scale of semantics informa-
tion gathered and analyzed in this work is still decided by the scale
of execution traces. When there are massive statements executed
by the failed test cases, the scale of semantics information may be
close to that of the coverage information. Besides, the workflow
of SmartFL is more complex and thus has higher learning costs
compared with traditional tactics.

Therefore, it is natural to think about whether there is dynamic
information having the ability to mine the correlation between
observed failures and faults on a relatively small scale. Exception
is a strategy originally designed to capture and report execution
status while running programs. In general, developers use “try” to
monitor some run-time events (e.g., reference to a null pointer or
division by zero). The exception handling code checks whether an
exception is thrown and further deals with thrown exceptions. By
referring to the best practices of exception-handling [54] which
suggest that “handling exceptions as close to the problem as you

1Chart: https://github.com/jfree/jfreechart
Time: https://github.com/JodaOrg/joda-time
MyBatis: https://github.com/mybatis/mybatis-3

can”, we found that these “try” blocks can be regarded as critical
checkpoints to inspect the status of program execution. As a
consequence, the status at these critical checkpoints has the po-
tential to provide proper dynamic information and thus serve the
purpose of fault localization.

To investigate the potential of the above exception information
and further integrate it into fault localization, we preliminarily
conduct an exploratory study on over 20 popular open-source Java
projects2. In this exploratory study, we first inspect the exception
handling strategies in each project to find a proper type of infor-
mation that is generally available and can thus make our method
widely applicable, after which we determine to utilize the exception
trigger information (i.e. whether an exception is triggered or not)
in try blocks. Then, we simulate 40 faulty versions of a project that
give failed results, and run the failed test cases of each version on
both the original version of the project and the faulty version itself.
By collecting their corresponding exception trigger information
in each covered try block, we form the exception trigger stream
for each version. We observed that the seeded fault usually lies
between the bifurcation point (i.e. the first covered try block having
different triggered-or-not information in the passed and failed ex-
ception trigger streams) and its previous covered try block (Please
see Section 3.1 for the motivation example).

Inspired by the motivation example, we present EXPECT, an
EXcePtion triggEr stream-based fault loCalizaTion technique. For
each failed test case, EXPECT first collects its exception trigger
stream in the failed execution, and then utilizes history versions,
different development branches, or mutants of the program under
test as substitutions for correct versions to collect the exception
trigger stream in the passed execution. Then, this pair of ex-
ception trigger streams are compared to identify the bifurcation
point, and a vote-based strategy is used to determine suspicious
statements based on execution traces. Last, EXPECT applies a tie-
breaking strategy to distinguish statements with the same number
of votes and deliver the final suspiciousness ranking list. Though
there have been FL techniques driven by exception information,
they typically target locating specific faults that lead to unhandled
exceptions using traditional dynamic information [14, 19, 36, 46].
To the best of our knowledge, there is no previous study that uses
exception trigger stream to localize faults.

For the evaluation, we obtain Gson, FastJson, and Jackson, three
high-quality projects used in a former work of exception handling
location recommendation learning [17], as well as Chart and Time,
two commonly-adopted projects in the field of fault localization [21,
23, 27, 41, 47] (Gson and Jackson are also commonly-adopted for
fault localization techniques). We inject mutated faults into these
projects and generate 600 faulty versions. Experimental results
show the competitiveness of EXPECT, it achieves as high as 38.26%
improvements in localizing faults regarding the Exam metric in
comparison to the SOTA fault localization technique, and it reduces
the scales of ties in existing FL methods by up to 99.08%.

Experimental data and code are available in our reposi-
tory [1], for any intention of replication or reuse.

This paper makes the following contributions:

2We use Java projects to conduct experiments, because Java is one of the most prevalent
programming languages and has a well-designed exception handling mechanism.

983

https://github.com/jfree/jfreechart
https://github.com/JodaOrg/joda-time
https://github.com/mybatis/mybatis-3

Do not neglect what’s on your hands: localizing software faults with exception trigger stream ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

• A novel source of information introduced to fault lo-
calization tasks. The main contribution of this work is to
mine the potential of exception information in localizing
faults. To the best of our knowledge, this is the first time that
the exception information is directly linked with the fault
location.

• A promising fault localization technique based on ex-
ception trigger streams. We utilize exception trigger in-
formation to form exception trigger streams, and further
propose EXPECT, a novel fault localization technique based
on exception information that is already at hand but typically
ignored.

• A comprehensive evaluation. Evaluated on five popular
benchmarks with well-recognized metrics, EXPECT shows
significant improvements in both fault localization and tie-
breaking tasks compared with the SOTA FL techniques to
date.

2 BACKGROUND
As mentioned above, exception is one kind of strategy typically
used to deal with run-time events [9], the program can throw an
exception for developers to catch and analyze the cause of that
exception. Java exceptions are instances of the Throwable class,
including checked exception, run-time exception, and errors [15,
34]. When an exception is thrown, it will be caught and handled
by the nearest exception handling code, thus, some of the best
practices suggest developers use the try block in places where
they believe abnormal execution status is more likely to be
detected [8, 15, 54], and the design of these critical checkpoints
naturally reflects developers’ understanding of the program [6, 32,
34]. The exception handling mechanism can help to improve the
reliability of software programs, since it aims to report execution
status while executing programs. The triggered-or-not behaviors of
exception are lightweight messages to inspect the execution status,
and it is intuitive to utilize such information for debugging.

3 PRELIMINARIES
3.1 Motivation Example
Seeing thatmore specific information that can describe the observed
failures while having a relatively small scale has not been properly
utilized, we propose to use exception information, since excep-
tion handling code is originally designed as critical checkpoints
that inspect the execution status, and hence has good potential of
providing hints for localizing faults.

We first carry out an exploratory study involving over 20 pop-
ular open-source Java projects to determine the specific type of
information in try blocks to be collected and analyzed. We found
out that programs generally have very diverse handling strategies
in try blocks when an exception is thrown, such as recording logs,
further throwing the exception, ignoring the exception, continuing
to process logic, and so on. Actually, this finding is consistent with
former studies [17, 34, 45]. Since our method must consider the in-
formation that can be generally obtained in any project having try
blocks, it is obvious that the information extracted from a specific
handling strategy is not a suitable candidate. Therefore, we choose
to only consider the triggered-or-not information in each try

(b) Execution in Faulty Version

(a) Execution in Original Version

Figure 1: The execution results of testWriteLenient

block (i.e., whether the entire try block is executed with or without
any exception thrown). Such information can be provided by any
try block despite the specific exception handling practices, and
thusmakes our method generally applicable. In the following
example, we will demonstrate how to collect such information,
and how it helps to locate the fault.

We employ Gson3 as the example program, which aims at con-
verting Java objects and JSON strings to each other. Gson has ap-
proximately 5,000 executable statements in its core classes and over
1,000 test cases. We create a “Faulty Version” by mutating the op-
erator “||” to “&&” in line 447 of the source file “Gson.java” (the
unmutated version is referred to as “Original Version”). The mutated
part of the source code can be found in Listing 1.

Listing 1: A Faulty Version of Gson� �
......

141 public final class Gson {
......

446 static void checkValidFloatingPoint(double value) {
// Fault: "&&" should be "||"

447 if(Double.isNaN(value) && Double.isInfinite(value)){
448 throw new IllegalArgumentException(value+"...");}}

......}
� �
This fault is revealed by the test case “testWriteLenient”4. It can

be found from Figure 1 that this test case gives unexpected results.
The “Faulty Version” fails to pass the test case with an assertion
error, and the “Original Version” passes it.

Let us first consider applying traditional methods to locate the
seeded fault, e.g, analyzing widely-used dynamic information such
as coverage information or execution traces. According to our inves-
tigation, the length of the coverage vector of Gson is nearly 5,000,
and the number of lines in the execution traces of “testWriteLenient”
is nearly 2,000, which is on a large scale thus making the evidence
towards the underlying fault somewhat difficult to analyze, and
may thus weaken the effectiveness of fault localization.

Now we consider using the triggered-or-not information in try
blocks to distinguish the two executions and further localize the
fault. Our script found 75 try blocks in Gson (a much smaller scale

3The version of Gson we use is archived in our repository [1]. The latest version of
Gson can be found in https://github.com/google/gson.
4The test case is provided in our repository [1], it could be accessed through
https://github.com/mudcarofficial/EXPECT/tree/main/motivationExample&runningExample.

984

https://github.com/google/gson/blob/main/gson/src/main/java/com/google/gson/Gson.java
https://github.com/mudcarofficial/EXPECT/tree/main/motivationExample&runningExample

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Xihao Zhang, Yi Song, Xiaoyuan Xie, Qi Xin, and Chenliang Xing

Table 1: Simplified exception trigger streams collected when
running testWriteLenient in failed and passed executions
Checkpoints Failed Execution in “Faulty Version” Passed Execution in “Original Version”

1 Try Block#1 - not triggered Try Block#1 - not triggered
2 Try Block#2 - not triggered Try Block#2 - not triggered
3 Try Block#2 - not triggered Try Block#2 - not triggered
4 Try Block#3 - not triggered Try Block#3 - not triggered
5 Try Block#2 - not triggered Try Block#2 - not triggered
6 Try Block#2 - not triggered Try Block#2 - not triggered

if (Double.isNaN(value) && if (Double.isNaN(value) | |
Double.isInfinite(value)) Double.isInfinite(value))

7 Try Block#3 - not triggered Try Block#3 - triggered

than that of coverage information or execution traces). We track
each try block a test execution enters and record whether all state-
ments in the try block are successfully executed or not. Take the
try block shown in Listing 2 as an example, in which a printing
statement is inserted at the end of the try block. If a test execution
enters this try block but does not print the “not triggered” state-
ment, we consider that an exception is triggered in this try block,
making the execution process immediately enter the catch block or
the finally block, and we record the exception in this try block as
“triggered”. By listing such triggered-or-not information in each try
block the current execution has entered, we can obtain the excep-
tion trigger stream, which partly shows the execution status at
the covered critical checkpoints.

Listing 2: Try Block#3 (Line 842 of “Gson.java”)� �
1 try {
2 adapter.write(writer, src);

// The instrumented printing statement
System.out.println("not triggered")

4 } catch (IOException e) {
5 throw new JsonIOException(e);
6 } catch (AssertionError e) {
7 throw new AssertionError("AssertionError(GSON " +

GsonBuildConfig.VERSION + "): " + e.getMessage(),e);
8 } finally { }
� �
The exception trigger streams of the test case “testWriteLenient”

is given in Table 1, in which the second column is for the failed
execution in “Faulty Version” and the third column is for the passed
execution in “Original Version”. The entire exception trigger streams
of the test case “testWriteLenient” only involves three try blocks (i.e.,
Try Block#1, Try Block#2, and Try Block#3. Try Block#3 is shown in
Listing 2, Try Block#1 and Try Block#2 are in our repository [1] due
to the space limit), and seven critical checkpoints (a try block may
be executed for multiple times, for each time the execution enters
a try block, it is regarded as entering a unique checkpoint). At each
checkpoint, we record the triggered-or-not information. For exam-
ple, the information in Checkpoint 1 collected in passed execution
tells that “testWriteLenient” first enters Try Block#1, and does not
trigger any exception in this critical checkpoint. But Checkpoint 7
in the same execution tells that Try Block#3 is the seventh entered
checkpoint and an exception is triggered in it.

We compare the detailed information of the two exception trigger
streams. It can be noticed that a difference exists in Checkpoint 7:
Try Block#3 catches an exception when the test case is running
in the passed execution5, while no exception is triggered by the
5Note that a thrown exception is not necessarily related to faults or failed executions
in practice.

same test case running in the failed execution. We refer to the first
checkpoint having different triggered-or-not information in two
exception trigger streams as the bifurcation point.

The bifurcation point reveals a different execution status cap-
tured in the corresponding critical checkpoint. Following the fa-
mous Propagation, Infection, and Execution (PIE) model [50], it is
not difficult to conjecture that such a different status may be due to
the execution of different statements prior to the bifurcation point.
By further inspecting the statements executed before the bifurca-
tion point, we find that the seeded fault in this example lies between
the bifurcation point and the previous checkpoint (as shown in the
line between Checkpoints 6 and 7 in Table 1). In our exploratory
study, we generate another 40 faulty versions of Gson and extract
the bifurcation points in each version using the same strategy, find-
ing that in 80% of the versions, the faulty statements can be found
between the bifurcation point and the closest checkpoint before the
bifurcation point (relevant data of the exploratory study is available
in our repository [1]). Thus we draw our inspiration to localizing
faults with exception trigger streams: In an execution trace, a
faulty statement is conjectured to lie between the bifurcation
point and its previous checkpoint, because when a faulty state-
ment is executed and triggers an abnormal status, the bifurcation
point is the first checkpoint to observe such an error.

3.2 Challenges
Inspired by the above observation, we design EXPECT, anEXcePtion
triggEr stream-based fault loCalizaTion technique, to utilize the
exception triggering information. Specifically, EXPECT first fo-
cuses on locating the bifurcation points between exception trigger
streams collected in failed and passed executions, which will then
be used to localize the faulty statement based on execution traces.
To make EXPECT a feasible method in practice, there are still some
challenges to be addressed. The first challenge is about “what to
compare” in identifying the bifurcation point. In the above ex-
ample, we generate mutants to simulate faults and compare the
exception trigger streams on these mutants with those on the origi-
nal version (i.e. the ground truth) to locate the faults. However, in
real practices, such “ground truth” is missing, we can only collect
the exception trigger stream in failed executions. So we need to ad-
dress the challenge of “what to compare” to make the identification
of the bifurcation point feasible.

Secondly, even if we have some solutions to provide versions
for comparison, we still need to address the challenge of “how
to compare” to identify the bifurcation point. Exception trigger
streams of the two executions in the comparison do not always
have the identical checkpoint sequence. We need to determine the
strategy for identifying the bifurcation point in different scenarios.

Last but not least, the solution for the challenge of “how to
locate” in assessing suspiciousness values for each statement needs
to be well designed. There may be massive statements executed
between checkpoints, and we may find multiple bifurcation points
when there is more than one failed test case, so we need to design a
method to get the final suspiciousness ranking based on bifurcation
points and execution traces.

985

Do not neglect what’s on your hands: localizing software faults with exception trigger stream ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Program Under Test

Pseudo Correct Versions Test Suite

Spectrum-based

Ranking

Tie

 Breaking

Suspiciousness

Ranking List

 Attaining

Pseudo Correct Versions

SBFL

Exception trigger streams
collected in passed executions

Exception trigger streams
collected in failed executions

Bifurcation Point

Voting

Vote-based RankingPhase-1

Phase-2

Phase-3

Compare

Phase-4

Final

Output

Bifurcation Point Tracing

Failed

Test Cases Passed

Test Cases
Convert

Figure 2: The overview of EXPECT

4 APPROACH
4.1 Overview
To tackle the first challenge of “what to compare”, we get the pseudo
correct versions of the program under test by utilizing history ver-
sions, different development branches, or mutants of the program,
and collect the exception trigger streams while running the origi-
nally failed test cases on these versions. Details of this solution are
elaborated in Section 4.2. For the second challenge that needs to lo-
cate the bifurcation points of each pair of exception trigger streams
collected in failed and passed executions, we compare the excep-
tion trigger information in different situations. This is elaborated
in Section 4.3. For the third challenge, to assess the suspiciousness
of program statements, we propose a vote-based strategy combined
with a tie-breaking tool. Please refer to Section 4.4 and Section 4.5
for the details. The overall flow of EXPECT is summarized in Fig-
ure 2, which consists of four main phases:

• Phase-1: EXPECT executes the test suite against the pro-
gram under test, for each failed test case, attaining a pseudo
correct version of the program that can turn the result of the
test case into “passed”. Such a version can be generated by
different ways, and is used to collect the exception trigger
stream of the corresponding test case in passed execution.

• Phase-2: EXPECT collects pairs of exception trigger streams
while executing each failed test case on the program under
test and its corresponding pseudo correct version, then com-
paring each pair of exception trigger streams and locating
the bifurcation points.

• Phase-3: According to the bifurcation points, EXPECT em-
ploys a vote-based strategy to calculate a suspiciousness
score for each program statement, for getting a vote-based
ranking.

• Phase-4: EXPECT applies a tie-breaking tool on the vote-
based ranking, deriving the final suspiciousness ranking.

As a reminder, EXPECT does not care whether an exception is
triggered at a particular checkpoint in an individual execution.
Instead, the difference between a passed and failed execution is the
key information for locating the fault. This is because the mission
of exception is mainly to deal with run-time events, rather than
directly indicate static faults (e.g., even a fault-free version may also
have exceptions being triggered). But the positions of try blocks
are critical checkpoints to observe the execution status, and the

difference between the execution status of a passed and a failed
execution shall be helpful in locating the fault.

4.2 Attaining Pseudo Correct Versions
To address the first challenge of “what to compare” in Section 3.2,
we propose to use “Pseudo Correct Version” as the substitute for the
correct version, on which the test result of the failed test case is
turned to “passed”. As such, the exception trigger stream of the
same test case collected in this “Pseudo Correct Version” can be used
as the passed reference to locate the bifurcation point.

We first define the concept and justify the use of “Pseudo Correct
Versions”. Revisit the example in Section 3.1, in which the “Original
Version” as the ground truth is generally unavailable in practice.
In other words, we do not have a version to provide an exception
trigger stream as a passed reference to compare with. Therefore,
we create a “Substitute Version” by seeding a different fault than the
fault in Listing 1, in the original “Gson.java” file. We require that
the test case “testWriteLenient” passes on this “Substitute Version”.
An interesting finding is that the exception trigger stream on this
“Substitute Version” is identical to the one on the “Original Version”.
In other words, though this “Substitute Version” is not a real correct
version (because we have no way to obtain such a correct version
in real practice), at least it does not contain the previous target fault
(i.e. the fault revealed by the failed test case). In contrast, for the
previous target fault, the “Substitute Version” approximates the real
correct version, in terms of both the testing result and the exception
trigger stream.

Inspired by this phenomenon, we further conduct the same at-
tempt on 40 randomly generated faulty versions and find that for
95.65% of the failed test cases, we can easily obtain such a “Substitute
Version”, on which the failed test cases become passed, and more
importantly, the corresponding exception trigger streams are
identical to that in the “Original Version” (i.e. the ground
truth). This finding justifies that such a “Substitute Version” is
promising to replace the unavailable correct version. In the follow-
ing discussion, we refer to a “Substitute Version” as a “Pseudo
Correct Version”, which is formally defined as: a different version
of the program under test that is capable of converting the failed
test case to a passed one. Relevant data of this section can be found
in our repository [1].

To get pseudo correct versions, we suggest utilizing history ver-
sions or different development branches of the program inwhich the

986

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Xihao Zhang, Yi Song, Xiaoyuan Xie, Qi Xin, and Chenliang Xing

execution results of originally failed test cases are “passed”. History
versions of a program are usually preserved during the development
process for potential needs of analysis and rollback, these versions
may not contain the fault caused by later code changes. Different
development branches are typically produced when different devel-
opers begin to change functions based on the same program version
while needing to avoid interference, the fault introduced by one
branch may not exist in other ones. History versions and different
development branches are usually not difficult to attain in real-
world development environments (e.g., Gson has more than 2,000
history versions, FastJson has more than 4,000 history versions and
10 active branches) and need no extra costs to generate. For pseudo
correct versions that can not be attained through the aforemen-
tioned ways, they can be generated by applying a mutation-based
technique and generating mutants of the program until the mutant
that reverses the result of the failed test case shows up, such a
mutant can serve as the pseudo correct version.

Failed test cases in a program are denoted as 𝑓𝑖 (𝑖 = 1, 2, ..., 𝑛),
where 𝑛 is the number of failed test cases. For each failed test case
𝑓𝑖 , EXPECT generates an pseudo correct version that can convert
the execution result of 𝑓𝑖 to pass, we refer to this version as 𝑝𝑐𝑣𝑖 .
The execution of 𝑓𝑖 on the original program under test and 𝑝𝑐𝑣𝑖 are
denoted as 𝑒𝑖 and 𝑝𝑒𝑖 , respectively. After obtaining 𝑝𝑐𝑣𝑖 of each 𝑓𝑖 ,
EXPECT collects exception trigger streams of 𝑒𝑖 and 𝑝𝑒𝑖 , which can
be denoted as 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 and 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 , respectively. The collection
of exception trigger streams is conducted based on source code
instrumentation.

Note that it is not reasonable to locate the fault by simply com-
paring traditional dynamic information (such as coverage informa-
tion and dynamic slices) between the program under test and the
pseudo correct version, because such information in pseudo correct
versions has significant differences compared with that in correct
versions, and thus can not be used to replace information in the
correct version. This issue is further discussed in Section 7.2.

4.3 Bifurcation Point Tracing
In this section, we first give definitions of exception trigger streams
in EXPECT. Awhole exception trigger stream is gathered during the
execution of a test case and consists of two parts of information:
the triggered-or-not status in try blocks and the execution
traces of program statements. The execution traces are only
used to vote for statements in Section 4.4. When running a test
case, we collect each statement it executes as well as the excep-
tion information in each checkpoint it enters, these two types of
information are organized in the order of execution and form the
exception trigger stream, as shown in Table 2. We use the try block
in Listing 2 as an example to assist in the elaboration of symbol
definitions.

Formula 1 shows the structure of a checkpoint. 𝐵𝑒𝑔𝑖𝑛 marks the
entrance of a checkpoint, while 𝐸𝑛𝑑 marks the exit of it. In Listing 2,
𝐵𝑒𝑔𝑖𝑛 marks the execution of code line 2, 𝐸𝑛𝑑 marks the execution
of code lines 4, 6, or 8. The same try block may be executed more
than once, we use 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 to describe a unique checkpoint. For
information begins with 𝐸𝑛𝑑 , it contains𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 telling whether
an exception is triggered in the corresponding checkpoint (0 for not
triggered, 1 for triggered). The 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 field and the 𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑

Table 2: The structure of exception trigger stream
Exception trigger stream

1 Statements_Begin_1
2 Begin:1
3 Statements_Begin_2
4 Begin:2
5 Statements_End_2
6 End:2_Triggered
7 Statements_End_1
8 End:1_Triggered

......
𝑛 Statements_Ending

field together represent the execution status at each checkpoint.
In addition to exception trigger information, a whole exception
trigger stream also includes execution traces of statements. For-
mula 2 shows the structure of execution traces. Each group of
traces contains the statements executed between the bounds of
checkpoints (the 𝐵𝑒𝑔𝑖𝑛 and the 𝐸𝑛𝑑 of a checkpoint are regarded as
its bounds). 𝐵𝑒𝑔𝑖𝑛/𝐸𝑛𝑑 : 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 represents that before which
bound is the group of traces collected. For example, in line 3 of Ta-
ble 2, 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠_𝐵𝑒𝑔𝑖𝑛 : 2 tells that these statements are executed
just before the entrance of a checkpoint, and the 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 field of
that checkpoint is 2. Note that the last line of an exception trigger
stream is specifically defined as 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠_𝐸𝑛𝑑𝑖𝑛𝑔, since no try
block is entered after executing these statements. Assuming that
the try block in Listing 2 is entered once by a test case and the exit
of this checkpoint is represented as 𝐸𝑛𝑑 : 1_0, which means that
no exception is triggered in this checkpoint, then the execution of
code line 2 would be recorded and contained in 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠_𝐸𝑛𝑑 : 1,
since it happens just before the exit of the checkpoint.

𝐵𝑒𝑔𝑖𝑛/𝐸𝑛𝑑 : 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 (_𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑) (1)

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠_𝐵𝑒𝑔𝑖𝑛/𝐸𝑛𝑑 : 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 (2)

We denote the bifurcation point of 𝑓𝑖 as 𝑏𝑝𝑖 , which is determined
by analyzing 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 (obtained while executing 𝑓𝑖 on the original
program under test) and 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 (obtained while executing 𝑓𝑖
on the pseudo correct version), the process of which begins with
comparing the execution status at the gathered checkpoints. As
introduced above, checkpoints are gathered when executing 𝑓𝑖 and
thus organized in the order of execution in each exception trigger
stream. When comparing the execution status at checkpoints be-
tween 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 and 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 , we align them according to their
order in the exception trigger stream and compare them in pairs.
The execution status at the 𝑛th gathered checkpoint in 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖
would be compared with that at the 𝑛th gathered checkpoint in
𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 .

To compare the execution status at a pair of checkpoints, we
focus on the information collected at the exit of them (i.e., informa-
tion starts with 𝐸𝑛𝑑 according to Formula 1). EXPECT judges the
existence of different execution status by comparing the 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟
and 𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 fields of Formula 1. If the 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 field is not
exactly the same, the current pair of checkpoints are gathered in
different try blocks, and if the 𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 field is not exactly the
same, the triggered-or-not behaviors in the two checkpoints are
different. If any of these two fields show a difference, the execution
status at corresponding checkpoints will be regarded as different.

987

Do not neglect what’s on your hands: localizing software faults with exception trigger stream ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

After comparing execution status at checkpoints in 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖
and 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 in pairs, there are two different situations. If EXPECT
finds a pair of checkpoints that have different execution status, we
have Situation-1 (Checkpoints with different execution status cap-
tured). Otherwise, we have Situation-2 (Checkpoints with different
execution status not captured).

Situation-1: Checkpoints with different execution status
captured. Among all pairs of checkpoints that have different exe-
cution status, the pair that is earliest gathered when executing 𝑓𝑖 is
determined as the bifurcation point. For example, if the first gath-
ered checkpoints and the second gathered checkpoints both have
different execution status, the first gathered checkpoints would be
determined as the bifurcation point, since they are gathered earlier
when executing 𝑓𝑖 on the original program under test and 𝑝𝑐𝑣𝑖 .
Considering that the numbers of checkpoints in the two exception
trigger streams may be different, we only compare the execution
status at the first𝑚𝑖𝑛_𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑖 pairs of checkpoints, in which
𝑚𝑖𝑛_𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑖 stands for the smaller number of checkpoints in
𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 and 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 .

If EXPECT can not find any difference in the execution status at
the first𝑚𝑖𝑛_𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑖 pairs of checkpoints, we seek to determine
the bifurcation point according to the numbers of checkpoints
in 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 and 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 , which will be described in Situation-2.

Situation-2: Checkpoints with different execution status
not captured. There are five possible sub-situations according to
the number of checkpoints in 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 and 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 , we discuss
each of them below.

Situation-2.1: Same number of checkpoints. If the numbers of
checkpoints in 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 and 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 are also equivalent, we think
that exception information of 𝑓𝑖 collected in passed and failed ex-
ecutions is insufficient to find the different execution status. No
bifurcation point of 𝑓𝑖 is found in this situation, and 𝑓𝑖 will not be
used to localize the fault in later phases.

Situation-2.2: Fewer checkpoints in the failed execution. If there
are fewer checkpoints in 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 , the last checkpoint in 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖
is regarded as the bifurcation point. Though there is no explicit
difference in the execution status at the bifurcation point, it is con-
jectured that 𝑒𝑖 shows a different execution status after meeting this
checkpoint, as 𝑝𝑒𝑖 gathers more checkpoints after the bifurcation
point.

Situation-2.3: More checkpoints in the failed execution. If there are
more checkpoints in 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 , the last pair of checkpoints com-
pared in the former process (i.e., the𝑚𝑖𝑛_𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 th

𝑖
gathered

checkpoints) are regarded as the bifurcation point. Similar to the
previous situation, we conjecture that 𝑒𝑖 shows a different execution
status by entering another checkpoint after meeting the bifurcation
point, while there are no more checkpoints after the bifurcation
point in 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 .

Situation-2.4: No checkpoint in the failed execution. If only 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖
contains checkpoints, EXPECT can not determine a checkpoint in
𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 as the bifurcation point. However, the difference indeed
exists and we will handle this sub-situation in Section 4.4.

Situation-2.5: No checkpoint in the passed execution. If only 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖
contains checkpoints, we do not regard any checkpoint as the bifur-
cation point, for no checkpoint is the exact location that 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖
and 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 have different execution status. The checkpoints in

𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 are entered while 𝑒𝑖 is already having a different execu-
tion status compared with 𝑝𝑒𝑖 , thus, these checkpoints should not
be seen as the bifurcation point. This sub-situation will be handled
in Section 4.4.

4.4 Voting
In this phase, each 𝑓𝑖 votes for suspicious statements according to
its corresponding bifurcation point 𝑏𝑝𝑖 and the situation it belongs
to. The voting strategy of each situation (except for situation-2.1
because it is not utilized in the voting phase as discussed above) is
described below. To facilitate comprehension, Table 3 gives exam-
ples the voting strategies, in which the bifurcation points and the
range of statements to be voted for are highlighted.

Situation-1: Checkpoints with different execution status
captured. Statements executed between𝑏𝑝𝑖 and the previous check-
point are voted, for they are more likely to contain the fault that
causes the different execution status captured by 𝑏𝑝𝑖 .

Situation-2: Checkpoints with different execution status
not captured.This situation consists of the following sub-situations.

Situation-2.2: Fewer checkpoints in the failed execution. Besides
voting for statements executed between 𝑏𝑝𝑖 and the previous check-
point, considering that there is a possibility that the fault lies after
𝑏𝑝𝑖 , to make our method more effective, we also vote for statements
executed after 𝑏𝑝𝑖 .

Situation-2.3: More checkpoints in the failed execution. The strat-
egy is mostly the same as that of Sub-Situation-2.2, the only differ-
ence lies in the way of voting for statements executed after 𝑏𝑝𝑖 . In
this situation, 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 contains more checkpoints, and we only
let 𝑓𝑖 vote for statements executed between 𝑏𝑝𝑖 and the checkpoint
immediately following it.

Situation-2.4: No checkpoint in the failed execution. If only 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖
contains no checkpoint, it is conjectured that the execution of 𝑒𝑖
has a different execution status before entering a checkpoint, thus,
all statements executed in 𝑒𝑖 are voted.

Situation-2.5: No checkpoint in the passed execution. If only 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖
contains checkpoints, we infer that 𝑒𝑖 has a different execution sta-
tus before entering the first checkpoint, thus, statements executed
before the first checkpoint are voted.

Note that try blocks may have nested relationships, more for-
mally, giving two try blocks A and B, if the execution enters B after
entering A and exits B before exiting A, we regard the try block B
as being nested within the try block A. When the bifurcation point
is found, any statement inside the corresponding try block may be
the root cause of the captured different execution status, and we
vote for all statements inside the try block no matter whether there
exist other nested try blocks. Refer to the example in Table 2, if the
bifurcation point is found in line 8, all statements in lines 3, 5, and
7 will be voted. This strategy is necessary and intuitive, it helps to
vote for all statements that have a relatively high possibility to be
the source of the bug.

Each 𝑓𝑖 casts one vote for each unique statement within its voting
range. The number of votes each statement gets is calculated by
adding up the number of failed test cases that vote for it, as shown in
Formula 3 and Formula 4, in which 𝑠 represents a unique statement.
We rank all statements of the program under test according to
the number of votes they receive, statements with more votes are

988

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Xihao Zhang, Yi Song, Xiaoyuan Xie, Qi Xin, and Chenliang Xing

Table 3: Voting strategies in different situations
Situation-1 Sub-Situation-2.2 Sub-Situation-2.3 Sub-Situation-2.4 Sub-Situation-2.5

𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖 𝑒𝑡𝑠_𝑝𝑎𝑠𝑠𝑖 𝑒𝑡𝑠_𝑓 𝑎𝑖𝑙𝑖
1 Statements_Begin_1 Statements_Begin_1 Statements_Begin_1 Statements_Begin_1 Statements_Begin_1 Statements_Begin_1 Statements_Begin_1 Statements_Begin_1
2 Begin:1 Begin:1 Begin:1 Begin:1 Begin:1 Begin:1 Begin:1 Begin:1
3 Statements_End_1 Statements_End_1 Statements_End_1 Statements_End_1 Statements_End_1 Statements_End_1 Statements_End_1 Statements_End_1
4 End:1_0 End:1_0 End:1_0 End:1_0 End:1_0 End:1_0 End:1_0 End:1_0
5 Statements_Begin_2 Statements_Begin_2 Statements_Begin_2 Statements_Begin_2
6 Begin:2 Begin:2 Begin:2 Begin:2
7 Statements_End_2 Statements_End_2 Statements_End_2 Statements_End_2
8 End:2_0 End:2_1 End:2_0 End:2_0
9 Statements_Ending Statements_Ending Statements_Ending

Statements_Ending Statements_Ending

Statements_Ending

Statements_Ending

Statements_Ending Statements_Ending

Statements_Ending

regarded as more suspicious. The output of this phase is a vote-
based ranking, as depicted in Figure 2.

𝑁𝑢𝑚𝑂𝑓𝑉𝑜𝑡𝑒𝑠𝑠 =

𝑛∑︁
𝑖=1

𝑉𝑜𝑡𝑒𝑖𝑠 (3)

𝑉𝑜𝑡𝑒𝑖𝑠 =

{
0 𝑖 𝑓 𝑓𝑖 𝑛𝑜𝑡 𝑣𝑜𝑡𝑖𝑛𝑔 𝑓 𝑜𝑟 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

1 𝑖 𝑓 𝑓𝑖 𝑖𝑠 𝑣𝑜𝑡𝑖𝑛𝑔 𝑓 𝑜𝑟 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠
(4)

4.5 Tie-breaking
In previous phases, the same group of statements executed between
two checkpoints may not be further distinguished, resulting in a
considerable tie. Identifying the faulty statement as one of the most
suspicious while having plenty of statements equally ranked is
not acceptable, since the outputs of fault localization techniques
are usually provided for developers as guidelines, a big tie can
seriously weaken the effectiveness of our method. To solve this
problem, we employ a suspiciousness evaluation method as the tie-
breaking tool for EXPECT, any fault localization method that can
evaluate the suspiciousness of statements can be employed. Here
we simply apply the widely used SBFL techniques, which separately
calculate the suspiciousness values for each program statement.
Though not promised to deliver outputs with high effectiveness,
these techniques can serve as tools for breaking ties introduced by
previous phases in EXPECT.

We apply SBFL techniques to calculate the suspiciousness values
for each statement. In the final suspiciousness ranking, statements
are first ranked by the number of votes they receive, then, for
statements indistinguishable according to the votes, they are further
ranked by the calculated suspiciousness scores. This tie-breaking
process combines the advantages of EXPECT and other traditional
techniques, and can deliver highly effective and fine-grained results.

For smooth understanding, we give a running example compris-
ing the mentioned steps of EXPECT in our repository [1].

5 EXPERIMENTAL SETUP
5.1 Research Questions

• RQ1: Competitiveness of EXPECT. Does EXPECT out-
perform the state-of-the-art technique SmartFL in terms of
fault localization effectiveness?

• RQ2: The performance of EXPECT in breaking ties.
Fault localization techniques may bring ties when estimating
the suspiciousness of program elements. How much does
EXPECT contribute to resolving these ties?

• RQ3: Ablation Analysis. The voting phase and the tie-
breaking phase are two key components of EXPECT. How

does each of them impact the fault localization effectiveness
of EXPECT?

• RQ4: Impact of different voting strategies. In principle,
there can be various voting strategies. Which one is more
effective in voting for the faulty statement precisely?

5.2 Parameter Setting
In our experiment, we apply Crosstab [57], Ochiai [2], DStar [56],
and Naish2 [38] (four of the most effective SBFL techniques) to
EXPECT’s tie-breaking component, to form four different configu-
rations, namely, 𝐸𝑋𝑃𝐸𝐶𝑇𝐶 , 𝐸𝑋𝑃𝐸𝐶𝑇𝑂 , 𝐸𝑋𝑃𝐸𝐶𝑇𝐷 , and 𝐸𝑋𝑃𝐸𝐶𝑇𝑁 ,
respectively. To gather exception trigger streams in the passed exe-
cutions, we find 𝑝𝑐𝑣𝑖 for each 𝑓𝑖 from other faulty versions, which
can be regarded as different development branches and mutations.
Such a choice is flexible and can be adjusted depending on specific
situations.

5.3 Datasets
EXPECT has a requirement of exception handling code that a pro-
gram can provide, if there are almost no try blocks, the effectiveness
of EXPECT would be weakened. To better evaluate the competi-
tiveness of EXPECT, we obtain Gson, FastJson, and Jackson that
are used for exception handling code recommendation learning
in a former work [17] and have approximately 75, 745, and 56 try
blocks, respectively. We also select Chart and Time from Defects4J
which are commonly used for evaluating fault localization tech-
niques [21, 23, 27, 41, 47] and have 42 and 75 try blocks, respectively
(Gson and Jackson are also projects in Defects4J). More details of
project selection are provided in Section 7.1.

Though Defects4J provides real-world bugs, the versions of the
buggy programs are rather old, each requiring different versions of
dependencies and JDK (the latest JDK version supported is 1.8, while
recently released versions of selected projects require at least JDK
11). Considering that we need to configure the programs and collect
the exception trigger information (which is not originally provided
in the pre-configured framework of Defects4J) in the framework
of EXPECT, reproducing these bugs would need massive human
efforts to handle the configuration and compatibility issues in each
version. Thus, we randomly inject mutated operators into recently
released versions of selected projects and create 600 faulty versions
as the datasets for our experiment6.

6Mutation-based faults have been demonstrated to be capable of simulating real-world
faults and thus providing reliable and trustworthy results for testing and debugging
experiments, they have been widely used in former studies [4, 5, 12, 13, 31, 48]. The
script to create mutations can be found in our repository [1].

989

Do not neglect what’s on your hands: localizing software faults with exception trigger stream ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 4: Comparison with the SOTA technique in effectiveness
Techniques Exam_Best Exam_Average Exam_Worst MRR WSR_NB WSR_B
𝑆𝑚𝑎𝑟𝑡𝐹𝐿 28.88 28.88 28.88 0.2705
𝐸𝑋𝑃𝐸𝐶𝑇𝐶 18.31 36.60%↑ 21.40 25.90%↑ 24.48 15.24%↑ 0.7167 164.95%↑ 1.18E-108 1.20E-98
𝐸𝑋𝑃𝐸𝐶𝑇𝑂 18.19 37.02%↑ 21.32 26.18%↑ 24.45 15.34%↑ 0.7173 165.18%↑ 7.12E-109 7.29E-99
𝐸𝑋𝑃𝐸𝐶𝑇𝐷 17.83 38.26%↑ 20.94 27.49%↑ 24.06 16.69%↑ 0.7171 165.10%↑ 1.18E-108 1.20E-98
𝐸𝑋𝑃𝐸𝐶𝑇𝑁 18.06 37.47%↑ 21.14 26.80%↑ 24.23 16.10%↑ 0.7033 160.00%↑ 9.60E-110 1.62E-99

5.4 Metrics and Environments
We adopt three metrics widely used in previous studies to evaluate
the performance of EXPECT, including Exam [23, 26, 33, 70], Mean
Reciprocal Rank (MRR) [10, 29, 35, 52], and Wilcoxon Signed-Rank
tests (WSR) [26, 56, 62].

Exam calculates the number of statements to be examined before
finding the fault. We consider three types of the Exam score: Best
(Exam_Best), Average (Exam_Avg), and Worst (Exam_Worst). In
Exam_Best and Exam_Worst, The faulty statement is assumed to
be checked before/after all other statements with the same suspi-
ciousness value, while in Exam_Avg, the rank of the fault is the
average rank of statements equally suspicious. Note that a lower
Exam score represents a better performance.

The MRR metric [51] is defined as the mean of the reciprocal
position at which the first relevant element is found. In our ex-
periment, it is calculated by Formula 5, in which 𝐾 represents the
number of faulty versions and 𝑟𝑎𝑛𝑘𝑖 is the rank of the fault in ver-
sion 𝑖 . We apply the Best strategy for the MRR metric. A higher
MRR score represents a better performance.

𝑀𝑅𝑅 =
1
𝐾

𝐾∑︁
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

(5)

WSR [53] is used to evaluate the statistical significance of our
experimental results, i.e., whether EXPECT outperforms existing
techniques significantly. We design two one-tailed alternative hy-
pothesis, NB (Not Bad) and B (Better). The NB is that the baseline
techniques require equal or greater number of statements to be
checked than EXPECT before localizing the fault, and the B is that
the baselines need a strictly greater number of statements to be
checked. We also use the Best strategy for this metric.

Our experiment is based on Ubuntu 16.04.1 LTS with JDK 17.

6 RESULT AND ANALYSIS
6.1 RQ1: Competitiveness of EXPECT
To evaluate the competitiveness of EXPECT,we compare its fault
localization effectiveness with the state-of-the-art technique,
SmartFL [67], which has been demonstrated to outperform the
existing SBFL and MBFL techniques.

The experimental results are shown in Table 4, it can be seen
that EXPECT configured with different suspiciouness evaluation
methods all outperform the baseline significantly. Table 4 gives the
improvement in different metrics made by EXPECT. Specifically, for
the Exammetric, EXPECT improves at least 15.24% in all conditions,
and it achieves over 20% improvement on average in the Average
and Worst conditions. For the MRR metric, EXPECT improves at
least 160%. Besides, EXPECT is more lightweight compared with
SmartFL, which suffers from high learning costs, further showing
the superiority of our method.

Table 5: EXPECT’s performance in breaking ties
𝑀 Crosstab Ochiai DStar Naish2

Original FL methods𝑀 90.75 680.21 680.08 90.75
𝐸𝑋𝑃𝐸𝐶𝑇𝑀 6.17 6.26 6.23 6.17

Improvement 93.20% 99.08% 99.08% 93.20%

For the WSR tests, Table 4 shows the 𝑝-values of the NB and
B alternative hypotheses. The results support us in rejecting the
two corresponding null hypotheses, and concluding that EXPECT
is more effective than the baseline from the perspective of the
statistics.

To summarize, EXPECT can obviously outperform the SOTA
technique in the tasks of ranking the faulty statement at a high
position. Our experiment shows the competitiveness of EXPECT,
and it also highlights the feasibility and importance of utilizing
exception information in fault localization tasks.

6.2 RQ2: The Performance of EXPECT in
Breaking Ties

Tie-breaking is an essential job in fault localization, because the
identical risk values of the faulty statement and innocent statements
could largely degrade the effectiveness of localization. In order
to evaluate how well EXPECT can alleviate the problem of tie
in existing fault localization techniques with such a problem, we
compare 𝐸𝑋𝑃𝐸𝐶𝑇𝐶 , 𝐸𝑋𝑃𝐸𝐶𝑇𝑂 , 𝐸𝑋𝑃𝐸𝐶𝑇𝐷 , and 𝐸𝑋𝑃𝐸𝐶𝑇𝑁 with the
original FL methods, namely Crosstab, Ochiai, DStar, and Naish2,
respectively.

The second row of Table 5 is the average number of statements
having the same suspiciousness value as the faulty statement given
by original FL methods 𝑀 (𝑀 takes Crosstab, Ochiai, DStar, and
Naish2). It can be seen that all the original FL methods suffer from
ties seriously. The average numbers of statements having the same
suspiciousness value as the faulty statement given by 𝐸𝑋𝑃𝐸𝐶𝑇𝑀
(configure each technique𝑀 as the tie-breaking tool for EXPECT)
are in the third row of Table 5. The results show promising perfor-
mance of EXPECT in breaking ties: compared with the scales of ties
in these original FL methods𝑀 , the scales of ties in 𝐸𝑋𝑃𝐸𝐶𝑇𝑀 after
the tie-breaking phase is rather low, the improvement reaches up
to 99.08%. This phenomenon shows that the strategy of conducting
fault localization based on exception information and introducing a
tie-breaking phase is capable of effectively alleviating the problem
of ties.

As a reminder, even though SmartFL gives fine-grained fault
localization results with almost no tie, EXPECT still outperforms
it in the Exam_Worst metric (as demonstrated in RQ1). That is to
say, developers need to check fewer statements before locating
the fault using EXPECT than using SmartFL even if the impact of

990

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Xihao Zhang, Yi Song, Xiaoyuan Xie, Qi Xin, and Chenliang Xing

Table 6: Improvement with the voting phase
Techniques Exam_Best Exam_Average Exam_Worst MRR WSR_NB WSR_B
𝑁𝑜𝑉𝑜𝑡𝑒𝐶 309.15 94.08%↑ 354.53 93.96%↑ 399.90 93.88%↑ 0.6786 5.62%↑ 1.90E-128 1.92E-35
𝐸𝑋𝑃𝐸𝐶𝑇𝐶 18.31 21.40 24.48 0.7167
𝑁𝑜𝑉𝑜𝑡𝑒𝑂 66.94 72.82%↑ 407.05 94.76%↑ 747.15 96.73%↑ 0.6793 5.60%↑ 1.90E-128 1.92E-35
𝐸𝑋𝑃𝐸𝐶𝑇𝑂 18.19 21.32 24.45 0.7173
𝑁𝑜𝑉𝑜𝑡𝑒𝐷 70.01 74.53%↑ 410.05 94.89%↑ 750.09 96.79%↑ 0.6832 4.97%↑ 1.90E-128 5.24E-35
𝐸𝑋𝑃𝐸𝐶𝑇𝐷 17.83 20.94 24.06 0.7171
𝑁𝑜𝑉𝑜𝑡𝑒𝑁 339.36 94.68%↑ 384.74 94.50%↑ 430.11 94.37%↑ 0.6788 3.61%↑ 3.10E-128 2.94E-33
𝐸𝑋𝑃𝐸𝐶𝑇𝑁 18.06 21.14 24.23 0.7033

Table 7: Improvement with the tie-breaking phase
Techniques Exam_Best Exam_Average Exam_Worst

𝑁𝑜𝑇𝑖𝑒-𝐵𝑟𝑒𝑎𝑘𝑖𝑛𝑔 1.34 1604.48 3207.62
𝐸𝑋𝑃𝐸𝐶𝑇𝐶 18.31 ↓ 21.40 98.67% ↑ 24.48 99.24% ↑
𝐸𝑋𝑃𝐸𝐶𝑇𝑂 18.19 ↓ 21.32 98.67% ↑ 24.45 99.24% ↑
𝐸𝑋𝑃𝐸𝐶𝑇𝐷 17.83 ↓ 20.94 98.67% ↑ 24.06 99.25% ↑
𝐸𝑋𝑃𝐸𝐶𝑇𝑁 18.06 ↓ 21.14 98.67% ↑ 24.23 99.24% ↑

ties is considered in the Worst condition, which further shows the
advantage of EXPECT.

6.3 RQ3: Ablation Analysis
We perform an ablation analysis to investigate the impact of each
of the two essential components, i.e., the voting phase and the
tie-breaking phase, on EXPECT’s fault localization capability.

First, we ablate the voting component of EXPECT and then com-
pare this variant (referred to as NoVote) with the original EXPECT.
The result is given in Table 6, it can be seen that the original EXPECT
significantly outperforms NoVote, it improves at least 72.82% in the
Exam_Best metric, as well as at least 96.79% in the Exam_Worst
metric. Considering the WSR tests, it is also reasonable for us to
reject the two corresponding null hypotheses and conclude that
the original EXPECT is more effective than the variant in which
the voting phase is ablated. These data show that the voting phase
makes a critical contribution.

Then, we ablate the tie-breaking component of EXPECT and
compare this variant (referred to as NoTie-Breaking) with the orig-
inal EXPECT. We use the Exam metric to compare these methods
in different conditions (i.e., Best, Average, and Worst). The result is
given in Table 7, it can be seen that the original EXPECT improves
significantly in the Average and Worst conditions. Note that the
Best condition ignores the influence of ties, it may not properly
evaluate the performance of FL methods when there are serious
ties, for example, when all statements are ranked equally, the score
of the Exam_Best metric would be 0, while such a ranking list is
meaningless. Thus, the original EXPECT is still more effective in
practice with alleviated ties. These data show that the tie-breaking
phase helps to deliver finer-grained results.

In conclusion, the voting phase of EXPECT plays a key role in
effectively localizing faults, while the tie-breaking phase contributes
to giving fine-grained results.

6.4 RQ4: Impact of Different Voting Strategies
We design four alternative voting strategies to be comparedwith the
original strategy used in EXPECT (referred to as “Original”): Vote_3,
Vote_5, Vote_distance, and Vote_interval. Vote_3 and Vote_5 ex-
pand the selection of statements to be voted and consider three and

Table 8: Comparison of different voting strategies
Voting strategies Exam_Best Exam_Average Exam_Worst

“Original” 1.34 1604.48 3207.62
Vote_3 1.18 1656.72 3312.26
Vote_5 0.70 1610.97 3221.24

Vote_distance 1.35 1529.18 3057.01
Vote_interval 98.17 1646.77 3195.36

five checkpoints above the bifurcation point instead of only one.
Vote_distance and Vote_interval are based on Vote_5. Specifically,
Vote_distance adjusts the number of votes for each statement, the
more checkpoints there are between the statement and the bifur-
cation point, the fewer votes it receives. Vote_interval adjusts the
number of votes according to the statement’s frequency of occur-
rence in different intervals between pairs of neighbor checkpoints.
In this research question, we only consider the vote-based ranking
before the tie-breaking phase for a more proper comparison.

The results are given in Table 8. It can be seen that serious ties
exist in all strategies, which is mainly due to the statistical impact
introduced by faulty versions in which the bifurcation point is not
found. For example, 71,396 executable statements are gathered in
FastJson, if all statements receive 0 votes, the tie would be 71,395,
which is anomalously huge. A similar problem also exists in SBFL
techniques, by utilizing SBFL techniques as the tie-breaking tools,
ties in most versions are effectively resolved, as discussed in Sec-
tion 6.2.

Compared with “Original”, Vote_5 is more effective in the Best
situation, which may be attributed to its expanded voting range.
Vote_distance performs better in the Average and the Worst situa-
tions, which may be attributed to its complicated voting strategy.
To alleviate the statistical impact mentioned above, we further com-
pare them in 300 randomly chosen faulty versions excluding those
with ties of more than 10,000 statements, the result is that Vote_5
gets 240.05 and 478.75 Exam scores in the Average and the Worst
situations, while “Original” and Vote_distance get 190.11 and 378.6,
as well as 174.54 and 347.57 scores, respectively. Considering that
Vote_5 and Vote_distance are more complicated and bring extra
costs, “Original” is better for its balanced performance in different
metrics as well as relatively low time costs and learning costs.

7 DISCUSSION
7.1 Eligibility of Programs for Using EXPECT
The success of EXPECT depends on exception trigger informa-
tion collected in exception handling code, which highlights the
importance of try blocks. If programs have few try blocks, the effec-
tiveness of EXPECT on them could be weakened, because it could
be hard to distinguish exception trigger streams collected in passed

991

Do not neglect what’s on your hands: localizing software faults with exception trigger stream ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

and failed executions, and further find the bifurcation point in such
a scenario. In our experiments, we first observe the number of try
blocks in alternative projects, programs with too few try blocks
are filtered in this process (for example, the source files in the core
package of Math have 12,363 lines of code with no try block, thus
we do not use Math for experiment).

But in our opinion, the need for try blocks will not remarkably
hinder EXPECT’s practicability. This is because well-designed
exception handling code is demanded for high-quality soft-
ware [8, 15, 54], and more and more developers are dedicating their
effort to inserting proper exception handling code into programs.
This trend supports the smooth running of EXPECT and provides
it with a promising implementation environment in the future.

7.2 Revisit the Usage of Pseudo Correct Versions
In Section 4.2, we use pseudo correct versions as substitutions for
correct versions to collect the exception trigger streams in passed ex-
ecutions. It may seem intuitive to consider comparing some widely
used dynamic information collected in the program under test and
pseudo correct versions to pinpoint the fault. However, such a strat-
egy is not feasible. Unlike the exception trigger information in the
pseudo correct versions and the correct version, traditional infor-
mation such as coverage and execution traces can be very different
between pseudo correct versions and the correct version. We con-
jecture that this phenomenon may be due to the characteristics of
these types of traditional dynamic information, for they can be eas-
ily changed by any code modifications. On the contrary, exception
information is a good inspector for execution status, it may not be
easily disturbed by code changes unless the code change brings an
abnormal execution status.

As an example, refer to the complete exception trigger streams
of “Substitute Version” and “Original Version” provided in our repos-
itory [1], though the exception trigger information in two versions
is identical, the execution traces are different between the two ver-
sions, in this scenario, comparing the execution traces in “Faulty
Version” and “Substitute Version” can not localize the fault effec-
tively. Similar phenomena can be found in many versions of our
exploratory study, which is also provided in our repository [1].

8 THREATS TO VALIDITY
The first threat to validity is about the open-source Java projects
chosen as our experimental datasets. Though projects used in our ex-
periments are representative and popular, we have to filter projects
with too little exception handling code. When there are too few
try blocks in the program under test, EXPECT may fail to find the
bifurcation point and vote for any statement. In such a scenario,
the effectiveness of EXPECT would be reduced to that of the tie-
breaking tool. The second threat to validity is about the metrics
we use to evaluate the performance of EXPECT. We apply three
widely-used metrics, i.e., Exam, MRR, and WSR tests, but there
may be more metrics that are capable of evaluating EXPECT from
different perspectives. In the future, we plan to use more metrics in
our experiment for a more robust evaluation.

9 RELATEDWORK
There are a large number of automatic fault localization approaches
using dynamic information in the literature. Among them, SBFL is
regarded as one of the most representative techniques. It collects
the coverage information of test cases, followed by analyzing the
differences in program spectra and allocating suspiciousness values
for each program element [16, 44]. Different risk evaluation formu-
las responsible for this process are proposed [2, 11, 20, 38, 56, 57],
some of which are generated by machine learning techniques [65].
Considering not only the original faulty program, MBFL techniques
generate mutants of the program to obtain more available infor-
mation by observing the behaviors of mutants [37, 40, 68]. Apart
from the coverage information and test results, there are more
types of information introduced to the fault localization tasks. For
example, the values of variables are typically used to find out bug-
related variables for finer-grained fault localization [18, 23], the
information provided by stack traces is collected for their abilities
to indicate the currently active function calls and the point where
the crash or bug occurred [55, 60], and dynamic program slicing
is employed to focus on a particular program execution and re-
duce the scale of suspicious statements [3, 43]. Nowadays, machine
learning algorithms are also widely applied to combine outputs of
traditional fault localization techniques and different sources of in-
formation [25, 27, 28, 70]. Among the techniques based on dynamic
information, SmartFL published in 2022 has been proven to be one
of the most advanced techniques so far [67]. In this work, we pro-
pose EXPECT, which is demonstrated to significantly outperform
this SOTA technique in fault localization.

10 CONCLUSION
In this paper, we propose EXPECT, a novel method that combines
exception trigger information and execution traces to localize faults.
EXPECT first collects exception trigger streams in passed and failed
executions of the program under test, then votes for suspicious
statements according to bifurcation points that capture the differ-
ent execution status between passed and failed executions. Finally,
a tie-breaking tool is applied to the statements with the identical
risk value. The experiments demonstrate the competitiveness of
EXPECT: Compared with the state-of-the-art technique, EXPECT
achieves as high as 38.26% improvements in localizing faults re-
garding the Exam metric. Besides, it reduces the scales of ties in
existing FL methods by up to 99.08%.

In the future, we plan to conduct research on open-source projects
to better exploit the exception information. Besides, we are also
interested in automatically recommending try blocks to get more
exception information for analysis.

ACKNOWLEDGMENTS
This work was partially supported by the National Natural Science
Foundation of China under the grant numbers 62250610224 and
62202344.

REFERENCES
[1] 2024. Repository of EXPECT. https://github.com/mudcarofficial/EXPECT
[2] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An evaluation

of similarity coefficients for software fault localization. In 2006 12th Pacific Rim
International Symposium on Dependable Computing. 39–46.

992

https://github.com/mudcarofficial/EXPECT

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Xihao Zhang, Yi Song, Xiaoyuan Xie, Qi Xin, and Chenliang Xing

[3] Hiralal Agrawal, Joseph R Horgan, Saul London, and W Eric Wong. 1995. Fault
localization using execution slices and dataflow tests. In Proceedings of Sixth
International Symposium on Software Reliability Engineering. ISSRE’95. 143–151.

[4] James H Andrews, Lionel C Briand, and Yvan Labiche. 2005. Is mutation an
appropriate tool for testing experiments?. In Proceedings of the 27th International
Conference on Software Engineering. 402–411.

[5] James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami Namin. 2006.
Using mutation analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering 32, 8 (2006), 608–624.

[6] Eiji Adachi Barbosa and Alessandro Garcia. 2018. Global-aware recommenda-
tions for repairing violations in exception handling. In Proceedings of the 40th
International Conference on Software Engineering. 858–858.

[7] Nazanin Bayati Chaleshtari and Saeed Parsa. 2020. SMBFL: slice-based cost
reduction of mutation-based fault localization. Empirical Software Engineering
25 (2020), 4282–4314.

[8] Joshua Bloch. 2008. Effective java. Addison-Wesley Professional.
[9] Bruno Cabral and Paulo Marques. 2007. Exception handling: A field study in java

and. net. In ECOOP 2007–Object-Oriented Programming: 21st European Conference,
Berlin, Germany, July 30-August 3, 2007. Proceedings 21. Springer, 151–175.

[10] An Ran Chen, Tse-Hsun Chen, and Junjie Chen. 2022. HowUseful is Code Change
Information for Fault Localization in Continuous Integration?. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software Engineering.
1–12.

[11] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer.
2002. Pinpoint: Problem determination in large, dynamic internet services. In
Proceedings International Conference on Dependable Systems and Networks. 595–
604.

[12] Hyunsook Do and Gregg Rothermel. 2006. On the use of mutation faults in
empirical assessments of test case prioritization techniques. IEEE Transactions
on Software Engineering 32, 9 (2006), 733–752.

[13] Ruizhi Gao and W Eric Wong. 2018. MSeer: an advanced technique for locating
multiple bugs in parallel. In Proceedings of the 40th International Conference on
Software Engineering. 1064–1064.

[14] Davide Ginelli, Oliviero Riganelli, Daniela Micucci, and Leonardo Mariani. 2021.
Exception-Driven Fault Localization for Automated Program Repair. In 2021 IEEE
21st International Conference on Software Quality, Reliability and Security. 598–607.
https://doi.org/10.1109/QRS54544.2021.00070

[15] James Gosling. 2000. The Java language specification. Addison-Wesley Profes-
sional.

[16] Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wu, and Liu Yi. 2000.
An empirical investigation of the relationship between spectra differences and
regression faults. Software Testing, Verification and Reliability 10, 3 (2000), 171–
194.

[17] Xiangyang Jia, Songqiang Chen, Xingqi Zhou, Xintong Li, Run Yu, Xu Chen, and
Jifeng Xuan. 2021. Where to handle an exception? Recommending exception
handling locations from a global perspective. In 2021 IEEE/ACM 29th International
Conference on Program Comprehension. 369–380.

[18] Jiajun Jiang, Yumeng Wang, Junjie Chen, Delin Lv, and Mengjiao Liu. 2023.
Variable-Based Fault Localization via Enhanced Decision Tree. ACM Transactions
on Software Engineering and Methodology 33, 2 (2023), 1–32.

[19] Shujuan Jiang, Wei Li, Haiyang Li, Yanmei Zhang, Hongchang Zhang, and Yingqi
Liu. 2012. Fault localization for null pointer exception based on stack trace and
program slicing. In 2012 12th International Conference on Quality Software. 9–12.

[20] James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering. 467–477.

[21] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.

[22] Fabian Keller, Lars Grunske, Simon Heiden, Antonio Filieri, Andre van Hoorn,
and David Lo. 2017. A critical evaluation of spectrum-based fault localization
techniques on a large-scale software system. In 2017 IEEE International Conference
on Software Quality, Reliability and Security. 114–125.

[23] Jeongho Kim, Jindae Kim, and Eunseok Lee. 2019. Vfl: Variable-based fault
localization. Information and Software Technology 107 (2019), 179–191.

[24] Yunho Kim, Seokhyeon Mun, Shin Yoo, and Moonzoo Kim. 2019. Precise learn-
to-rank fault localization using dynamic and static features of target programs.
ACM Transactions on Software Engineering and Methodology 28, 4 (2019), 1–34.

[25] Yiğit Küçük, Tim AD Henderson, and Andy Podgurski. 2021. Improving fault
localization by integrating value and predicate based causal inference techniques.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering. 649–660.

[26] Yan Lei, Huan Xie, Tao Zhang, Meng Yan, Zhou Xu, and Chengnian Sun. 2022.
Feature-fl: Feature-based fault localization. IEEE Transactions on Reliability 71, 1
(2022), 264–283.

[27] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
169–180.

[28] Yi Li, Shaohua Wang, and Tien Nguyen. 2021. Fault localization with code
coverage representation learning. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering. 661–673.

[29] Zheng Li, Xue Bai, Haifeng Wang, and Yong Liu. 2020. IRBFL: an information
retrieval based fault localization approach. In 2020 IEEE 44th Annual Computers,
Software, and Applications Conference. 991–996.

[30] Zheng Li, HaifengWang, and Yong Liu. 2020. Hmer: A hybrid mutation execution
reduction approach for mutation-based fault localization. Journal of Systems and
Software 168 (2020), 110661.

[31] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel PMidkiff. 2006. Statistical
debugging: A hypothesis testing-based approach. IEEE Transactions on Software
Engineering 32, 10 (2006), 831–848.

[32] Dino Mandrioli, Bertrand Meyer, et al. 1992. Advances in object oriented software
engineering. Prentice Hall.

[33] Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. 2014.
Slice-based statistical fault localization. Journal of Systems and Software 89 (2014),
51–62.

[34] Hugo Melo, Roberta Coelho, and Christoph Treude. 2019. Unveiling exception
handling guidelines adopted by java developers. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering. 128–139.

[35] Nima Miryeganeh, Sepehr Hashtroudi, and Hadi Hemmati. 2021. Globug: using
global data in fault localization. Journal of Systems and Software 177 (2021),
110961.

[36] Hamed Mirzaei and Abbas Heydarnoori. 2015. Exception fault localization in
android applications. In 2015 2nd ACM International Conference onMobile Software
Engineering and Systems. 156–157.

[37] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
mutants: Mutating faulty programs for fault localization. In 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation. 153–162.

[38] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based software diagnosis. ACM Transactions on Software Engineering and Method-
ology 20, 3 (2011), 1–32.

[39] Ganesh J Pai and Joanne Bechta Dugan. 2007. Empirical analysis of software
fault content and fault proneness using Bayesian methods. IEEE Transactions on
Software Engineering 33, 10 (2007), 675–686.

[40] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605–628.

[41] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering. 609–620.

[42] Strategic Planning. 2002. The economic impacts of inadequate infrastructure for
software testing. National Institute of Standards and Technology 1 (2002).

[43] Manos Renieres and Steven P Reiss. 2003. Fault localization with nearest neighbor
queries. In 18th IEEE International Conference on Automated Software Engineering,
2003. Proceedings. 30–39.

[44] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. 1997. The use of
program profiling for software maintenance with applications to the year 2000
problem. In Proceedings of the 6th European SOFTWARE ENGINEERING conference
held jointly with the 5th ACM SIGSOFT international symposium on Foundations
of software engineering. 432–449.

[45] Demóstenes Sena, Roberta Coelho, Uirá Kulesza, and Rodrigo Bonifácio. 2016.
Understanding the exception handling strategies of Java libraries: An empirical
study. In Proceedings of the 13th International Conference on Mining Software
Repositories. 212–222.

[46] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang, Mijung Kim, and
Mary Jean Harrold. 2009. Fault localization and repair for Java runtime ex-
ceptions. In Proceedings of the eighteenth International Symposium on Software
Testing and Analysis. 153–164.

[47] Jeongju Sohn and Shin Yoo. 2017. Fluccs: Using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 273–283.

[48] Yi Song, Xihao Zhang, Xiaoyuan Xie, Quanming Liu, Ruizhi Gao, and Chenliang
Xing. 2024. ReClues: Representing and indexing failures in parallel debugging
with program variables. In Proceedings of the IEEE/ACM 46th International Con-
ference on Software Engineering. 1–13.

[49] Iris Vessey. 1985. Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies 23, 5 (1985), 459–494.

[50] Jeffrey M. Voas. 1992. PIE: A dynamic failure-based technique. IEEE Transactions
on software Engineering 18, 8 (1992), 717.

[51] Ellen M Voorhees et al. 1999. The trec-8 question answering track report.. In
Trec, Vol. 99. 77–82.

[52] Ming Wen, Junjie Chen, Yongqiang Tian, Rongxin Wu, Dan Hao, Shi Han, and
Shing-Chi Cheung. 2019. Historical spectrum based fault localization. IEEE
Transactions on Software Engineering 47, 11 (2019), 2348–2368.

[53] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in Statistics: Methodology and Distribution. Springer, 196–202.

993

https://doi.org/10.1109/QRS54544.2021.00070

Do not neglect what’s on your hands: localizing software faults with exception trigger stream ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

[54] Rebecca J Wirfs-Brock. 2006. Toward exception-handling best practices and
patterns. IEEE software 23, 5 (2006), 11–13.

[55] Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong
Mei. 2014. Boosting bug-report-oriented fault localization with segmentation
and stack-trace analysis. In 2014 IEEE International Conference on Software Main-
tenance and Evolution. 181–190.

[56] W Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2013. The DStar method
for effective software fault localization. IEEE Transactions on Reliability 63, 1
(2013), 290–308.

[57] W Eric Wong, Vidroha Debroy, and Dianxiang Xu. 2011. Towards better fault
localization: A crosstab-based statistical approach. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 42, 3 (2011), 378–396.

[58] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740. https://doi.org/10.1109/TSE.2016.2521368

[59] Craig S Wright and Tanveer A Zia. 2011. A quantitative analysis into the eco-
nomics of correcting software bugs. In Computational Intelligence in Security for
Information Systems: 4th International Conference, CISIS 2011, Held at IWANN
2011, Torremolinos-Málaga, Spain, June 8-10, 2011. Proceedings. 198–205.

[60] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. 2014.
Crashlocator: Locating crashing faults based on crash stacks. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 204–214.

[61] Xi Xiao, Yuqing Pan, Bin Zhang, Guangwu Hu, Qing Li, and Runiu Lu. 2021.
ALBFL: A novel neural ranking model for software fault localization via combin-
ing static and dynamic features. Information and Software Technology 139 (2021),
106653.

[62] Huan Xie, Yan Lei, Meng Yan, Yue Yu, Xin Xia, and Xiaoguang Mao. 2022. A
universal data augmentation approach for fault localization. In Proceedings of the
44th International Conference on Software Engineering. 48–60.

[63] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013. A
theoretical analysis of the risk evaluation formulas for spectrum-based fault
localization. ACM Transactions on Software Engineering and Methodology 22, 4
(2013), 1–40.

[64] Xiaofeng Xu, Vidroha Debroy, W Eric Wong, and Donghui Guo. 2011. Ties within
fault localization rankings: Exposing and addressing the problem. International
Journal of Software Engineering and Knowledge Engineering 21, 06 (2011), 803–827.

[65] Shin Yoo. 2012. Evolving human competitive spectra-based fault localisation
techniques. In Search Based Software Engineering: 4th International Symposium,
SSBSE 2012, Riva del Garda, Italy, September 28-30, 2012. Proceedings 4. 244–258.

[66] Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, and Mark Harman.
2017. Human competitiveness of genetic programming in spectrum-based fault
localisation: Theoretical and empirical analysis. ACM Transactions on Software
Engineering and Methodology 26, 1 (2017), 1–30.

[67] Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, and Lu Zhang.
2022. Fault localization via efficient probabilistic modeling of program semantics.
In Proceedings of the 44th International Conference on Software Engineering. 958–
969.

[68] Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting mechanical
faults to localize developer faults for evolving software. ACM SIGPLAN Notices
48, 10 (2013), 765–784.

[69] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2007. A study of effectiveness of
dynamic slicing in locating real faults. Empirical Software Engineering 12 (2007),
143–160.

[70] Zhuo Zhang, Yan Lei, Xiaoguang Mao, and Panpan Li. 2019. CNN-FL: An Ef-
fective Approach for Localizing Faults using Convolutional Neural Networks.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering. 445–455. https://doi.org/10.1109/SANER.2019.8668002

[71] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D Ernst, and Lu Zhang. 2019.
An empirical study of fault localization families and their combinations. IEEE
Transactions on Software Engineering 47, 2 (2019), 332–347.

994

https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/SANER.2019.8668002

